Case 4.

Ewa Iżycka-Świeszewska
Department of Pathology and Neuropathology

Joanna Stefanowicz, Elżbieta Drożyńska
Department of Pediatrics, Hematology and Oncology

Bartłomiej Wasąg
Department of Biology and Medical Genetics

Piotr Czauderna
Department of Surgery and Urology for Children and Adolescents

Jacek Gulczyński
Department of Pathology and Neuropathology

Medical University of Gdansk, Poland
• A mass of the left thigh in a fetus detected on US exam in the 13th week of pregnancy

• A FTD boy born in Feb 2012 (cesarean section), deep-seated tumor 60x76x125 mm involving soft tissues from the dorsal and medial sides, extending from the pre-trochlear region to the proximal tibia. No infiltration of bone and big blood vessels
Biopsy 2012

• Cellular-rich spindle cell tumor with infiltrative diffuse and whorly pattern of growth; low mitotic activity. IHC: CD34 focal +, SMA focal +, CD99 focal+, Ki67 up to 10%, Desmin(-), MyoD1 (-), S100(-)
The first diagnosis - Infantile Fibrosarcoma
Consultations

• 1) Infantile fibromatosis / myofibromatosis

• 2) Molecular genetic analysis did not show a break in the *ETV-6* gene (*ETV-NTRK3*) (lack of t(12; 15) (p13;q25).

Diagnosis ➔ **Infantile fibromatosis, diffuse type.**

• Chemotherapy Feb - July 2012: 6 VAC courses (CWS 2006)

• Tumor volume stable

• Sub-total tumor resection
Histopathology 2012

- Low grade spindle cell lesion, collagen production. Immunophenotype the same as in a chemonaive tumor.
Immunohistochemistry

- SMA
- Beta catenin
- CD99
- Desmin, S100, MyoD1, CD117
- CD34
Continuation of the chemotherapy

- Vinblastin + Methotrexate (Sep 2012 - April 2013) – Methotrexat, Vinblastine; residual **tumor stabilization for 4.5 years**
January 2018

Slow regrowth of the tumor since two months before admission; heterogenous mass 104 x 81 x 95 mm
Biopsy 2018

• Highly cellular tumor made of small and medium-sized epithelioid cells with prominent mitotic activity and necrotic foci. Immunophenotype: SMA focal+, S100+, CD34+, PGP9.5(-), NSE(-), SOX10(-), Ki67 up to 25%

• The diagnosis ➔ **Fibromatosis with signs of atypization**

Recommendation for a wide genomic analysis of the tumor tissue
Gross-total tumor resection

- April 2018
- The densely cellular, heterogenous tumor with high mitotic activity, fields of atypization, spindle and epithelioid cells, fields of fibrosarcoma pattern; collagen production. Multifocal necrosis, also geographic
- Immunophenotype: strong S100 positivity, in part loss of CD34 expression, SMA very low
Final diagnosis

• The genetic study (Illumina; Archer Dx) ➔ **TMP3-NTRK1** fusion

• Histological picture + clinical history + results of a genetic study = diagnosis of:

Aggressive Lipofibromatosis-like Neural Tumor

Therapy 2018/2019

- Multicenter consultations in Europe and US on optimal therapeutic approach; because of localized stage and subtotal tumor resection, observation was suggested (May 2018)

- July 2018- local progression of the disease and lung metastases. Chemotherapy- VAC, CEV

- August 2018 - the boy was enrolled in the phase I/II trial LOXO-TRK-15003, started LOXO-101 ➔ partial local and lung response Nov 2018.

- CT of the lungs 01.2019 - one lung lesion progressive, whereby all others are more or less stable.
Progressing lung metastasis

• Biopsy for molecular analysis and resistance mutations

• *TPM3 (7)-NTRK1(10)* fusion

• *NTRK1 G595R* acquired solvent front resistance mutation (decreases binding of LOXO-101)

• New drug LOXO-195 administration with increasing doses (since three months local progression and pulmonary dissemination)
Pulmonary metastasis
Lipofibromatosis-like neural tumor

- Infantile / congenital- single cases (altogether 20)
- Highly infiltrative, cellular, primitive ovoid- spindle cell low grade lesions, collagenous or myxoid stroma
- No consistent IHC: variable expression CD34, S100, SMA, (CD30)
- Differential diagnosis: Congenital Infantile Fibrosarcoma (CIFS), Myofibroma/ Myofibromatosis group of tumors, Infantile Fibromatosis / Lipofibromatosis, Spindle cell RMS; DFSP

- Fusions: \textit{LMNA-NTRK1; TPM3-NTRK1;} \textit{(EML4-NTRK3)}
- \textit{TRK immunoreactivity}

- Conception/ nomenclature:
 - NTRK-associated mesenchymal tumors
 - NTRK- fusion sarcomas (together with CIFS \textit{(ETV-NTRK3)})
TMP3-NTRK1 fusion

- Chromosome 1
 - Close-up, normal
 - Inversion
 - Deletion
 - q21.3
 - q23.3

- Fusion by inversion:
 - TPM3
 - 3' end of TPM3
 - LMNA
 - 5' end of NTRK1
 - NTRK1
 - Fusion by removal:
 - LMNA-NTRK1
 - Cut out section
 - Fuse ends
 - Removed

- Genes involved:
 - TPM3
 - NTRK1
 - LMNA

- Chromosome 12 and 15:
 - der(12)
 - der(15)
 - NTRK3
 - 12 (der)
 - 15 (der)
TRK fusions are rare but recurrent oncogenic drivers in a variety of adult and pediatric cancers

- Beyond the embryo, tropomyosin receptor kinase (TRK) proteins TRKA, TRKB, and TRKC are primarily limited to the nervous system
 - TRK is uncommonly expressed in normal tissues
- Recurrent chromosomal fusion events have been identified across diverse pediatric and adult cancers
References:

- Infantile NTRK-associated Mesenchymal Tumors. Davis JL et al. , Pediatr Dev Pathol. 2018
- New fusion sarcomas: histopathology and clinical significance of selected entities. Miettinen M, et al., Hum Pathol. 2019
- Fibroblastic and myofibroblastic tumors of children: new genetic entities and new ancillary testing. Parham DM; F1000Res. 2018