Breast mass imaging: Role and limitations

Docteur Laura ELKIND
Radiologist
Centre Antoine Lacassagne, NICE
Overview

Breast mass imaging

- **Role**
 - Detection : Screening program
 - Characterisation - BIRADS
 - Histologic Correlation

- **Limitations**
 - Missed breast cancer
 - Overdiagnosis
Part 1 : Radiologist’s role

- To perform a complete diagnostic imaging evaluation before doing an assessment
- To recognize lesions requiring biopsy
- Good interpretation of imaging should:
 - Respect the descriptive guidelines of the BIRADS
 - Include the various imaging techniques
 - Summarize the diagnostic strategy for clinicians

Standardized diagnosis and reporting of breast cancer. Diagnostic and Interventional Imaging, Thomassin N, 2014
Role

Screening mammography

- Early detection of breast cancer reduces mortality from breast cancer
 - 24% reduction of breast cancer mortality among those invited to mammography screening

- Early diagnosis offers more treatment options and less aggressive treatment
 - Less mastectomy
 - Less chemotherapy

Breast cancer screening with mammography, Lancet 1993
Mammography = gold standard screening examination

Cranio-caudal (CC) Mediolateral Oblique (MLO)
Role

BIRADS : classification

- Terminology developed by the American College of radiography
 - Lexicon used worldwide
 - Classification based on the *positive predictive value of malignancy*

- Describe lesions detected by the different breast-imaging techniques: mammography, ultrasound, MRI

- Role
 - To standardize reports
 - To adapt patient management and follow-up
Role

BIRADS: when to do a biopsy?

- ACR 4: 3 < PPV < 94 %
- ACR 5: PPV > 94 %
- ACR 3: PPV < 3 %

To adapt strategy:
- Invasive carcinoma ⇒ axillary lymph node exploration
- Multifocal cancer ⇒ conservative vs mastectomy

To confirm homo or controlateral breast cancer
Genetic mutation
Risk of non-compliance

ACR BI-RADS atlas: breast imaging reporting and data system (5th ed.) (2013)
Role

Mass: Definition

- A mass is defined by a space-occupying lesion that is visible on two different views.
- If a potential mass is seen on one view only, it should be reported as an “asymmetry”.
- Masses are characterized according to strict criteria.

ACR BI-RADS atlas: breast imaging reporting and data system (5th ed.) (2013)
Role

Mass: Characterization

<table>
<thead>
<tr>
<th>Masses</th>
<th>Shape</th>
<th>Margin</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oval</td>
<td>Circumscribed</td>
<td>High density</td>
</tr>
<tr>
<td></td>
<td>Round</td>
<td>Obscured</td>
<td>Equal density</td>
</tr>
<tr>
<td></td>
<td>Irregular</td>
<td>Microlobulated</td>
<td>Low density</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indistinct</td>
<td>Fat-containing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spiculated</td>
<td></td>
</tr>
</tbody>
</table>

Margin = this criteria has the highest positive predictive value for malignancy
Role

Mass: Characterization

- How to better assess the margins?
 - spot compression views
Role

Mass: **Characterization**

- How to better assess the margins?
 - *Ultrasound (US)*: description of the shape, margin, orientation compared to the skin, echo pattern, vascularisation

ACR BI-RADS atlas: breast imaging reporting and data system (5th ed.) (2013)
Role

Mass: **Characterization**

- How to better assess the margins?
 - *Tomosynthesis*: significantly decreases convergence phenomena due to glandular overlay
Role

Mass : localisation

- **In US :**
 - Distance to the nipple
 - Clock radius

- **Triangulation principle**
 - From the oblique and CC views - by aligning the nipples - it is possible to locate the lesion on the profile view (upper or lower)
Case 1

- 55-year-old patient
- No medical history
- Screening mammography
Do you see anything?
Do you see anything?

⇒ A small lesion at the bottom of the axillary area
You are the radiologist: what is your next step?

1. Nothing. It is a benign axillary lymph node
2. Proceed with spot compression
3. Ask for profil view
4. Compare with previous exams
You are the radiologist: what is your next step?

1. Nothing. It is a benign axillary lymph node

2. Proceed with spot compression - to assess the margin

3. Ask for profil view - to locate the lesion

4. Compare with previous exams
Where is the mass located?

In the upper external quadrant

⇒ In the upper external quadrant
Lesion visible since 2014. What do you do?
What do you do?

- Classify ACR 5: spiculated margin
- Add US examination
- Perform a biopsy

A spiculated mass is suspect even if it’s stable for years +++
Core biopsy US-guided:
NST grade I

Mass, irregular margins
=> ACR5
Role

Pathological-imaging correlations

- The anatomopathological classification used to evaluate breast tissue specimens from biopsy is the *European classification*
 \[(B1 \Leftrightarrow B5)\]

- After the biopsy, the radiologist has to check if there is correlation between imaging anomalies and histological results
ACR 3 - ACR 4 a ⇒ B2

- Round mass smooth margin or lobulated
- Complicated or complex cyst

Biopsy validated ⇒ Follow up

ACR 3 - ACR 4 a ⇒ B1

RCP Follow-up or new biopsy
Causes of discordance

• Targeting errors
 Small lesions < 5mm (use of a clip during the biopsy)
 Breast fibrosis
 Deep lesions

• Poor visibility of the target and the needle
 Patient’s movement
 Hematoma
Pitfalls in diagnosis

- ACR5 or ACR4b ACR4c \Rightarrow B1 or B2
 - Risk of FN +++ : failed biopsy
 - New core biopsy or surgical excision

- Benign lesions present themselves as malignant
 - Radial breast scare
 - Sclerosing adenosis
 - Fibroadenoma: with irregular boundaries, infarction, hyalinization or stromal proliferation
Part 2 : Limitations

• Missed breast cancer

• Controversial impact of the mammography
 ◦ X- Ray exposure
 ◦ Overdiagnosis
Limitations

Missed breast cancer

• Detection errors:
 = Presence of a mass but overlooked
 • lack of attention or experience
 • Poor technical application
 • Up to 1/3 of interval cancers

• Misleading interpretation:
 = Cancers mimicking pseudobenign lesions or with slow evolution.

Thurfjell EL. Benefit of independent double reading in a population-based mammography screening program. Radiology 1994
Limitations

Detection errors

Missed cancers are often in the glandular border or in the deeper part of the breast

Not 1 ... but 2 lesions

Poor technical application
Limitations

Detection errors

- Multifocal cancers
 - 20% of cancers (lobular)
 - Bilateral in 10% of cases

- «Satisfaction of search»
 - After the identification of a first lesion, the radiologist misses additional lesions

Therapeutic implications: surgery of multifocal cancers is monobloc
Conservative surgery versus mastectomy

Liberman L et al. MR imaging findings in the controlateral breast of women with recently diagnosed breast cancer. AJR 2003
Case 2

- Patient coming for pre-operative localization of a triple negative grade III cancer of left breast
- Conservative surgery planned
Where is the ACR6 lesion located?
Do you see anything else?

Lésion ACR6
Do you see anything else?
Additional lesion in another part of the breast

Biopsy = NST grade II

Conservative surgery ⇒ MASTECTOMY
Limitations

Pseudobenign lesions

- **Slow evolution:** low Ki, tubular
- **Round cancer**
 - First screening of a BRCA patient, well limited mass ⇒ ACR 3.
 - Follow up after 4 month: increase in size ⇒ biopsy
Limitations

Mammography controversial impact

- No decrease in mortality

- Radiation risk

- Overdiagnosis
Limitations

Overdiagnosis

• Indolent cancer would not have produced symptoms or premature death

• ≠ false positives (10%):
 ◦ initial screening suggests a pejorative lesion but follow up and/or biopsy reveal benign lesion
 • Anxiety
 • Unnecessary biopsies
 • Overtreatment such as surgical excision

⇒ Over a 20-year-period of screening, 1woman/5 will have a FP diagnosis

Benefits and Harms of Breast Cancer Screening: A Systematic Review, Jama 2015
Kargan Arleo et al, cancer 2017
Conclusion

Take home message

- **ROLE**
 - Detection
 - Characterization
 - Biopsy
 - Histologic correlation

- **LIMITATIONS**
 - Missed breast cancer
 - Overdiagnosis
 - Xray radiation
 - Effect on mortality rate
Future?

Artificial intelligence for breast cancer screening: Opportunity or hype?

Nehmat Houssami a,*, Christoph I. Lee b, Diana S.M. Buist c, Dacheng Tao d

- AI technologies could be used
 - To increase the accuracy of mammography screening?
 - To distinguish lesions that require excision and those that could be followed up?

- Extremely large data-sets of imaging examinations linked to clinical factors and cancer outcomes are needed to train and validate models
Thank you for your attention

Docteur Laura ELKIND
Radiologist
Centre Antoine Lacassagne, NICE