The next generation of microsatellite instability testing

Richard Gallon PhD MBioch
Research Associate, Cancer Prevention Research Group
Institute of Genetic Medicine, Newcastle University
richard.gallon@newcastle.ac.uk
Overview and Disclosures

1. How and why we test for microsatellite instability (MSI)

2. A tumour-sequencing MSI assay, using as few as 6 markers for high throughput diagnostics

Newcastle University owns a patent covering the extended marker set used in the assay
Patent ID: PCT/GB2017/052488, published 1st March 2018

Named inventor on a patent filed by Newcastle University covering a reduced marker set
PCT application number: PCT/GB2019/052148, unpublished, filing date 31st July 2019
Clinical Needs for Mismatch Repair Deficiency Testing

Mismatch repair (MMR) deficiency testing of colorectal cancers (CRCs) is recommended to screen for Lynch syndrome (LS) (Balmana et al., 2013; Stoffel et al., 2015; UK NICE DG 27, 2017)

Screening for LS in endometrial cancers is also cost effective (Snowsill et al., 2019)

Pembrolizumab/Keytruda (immune checkpoint inhibitor) is FDA-approved as a second line treatment in any metastatic MSI-H cancer (MERCK & Co. Inc, 2017)
Tests for Mismatch Repair Deficiency

1) 4-panel IHC:

![αMSH2](image)

2) MSI testing by PCR fragment length analysis:

![Promega MSI Analysis System v1.2; Alhilal PhD Thesis, 2016](image)

3) MSI testing by next generation sequencing:

...TTGATTT TT
Tests for Mismatch Repair Deficiency

Test performance:

<table>
<thead>
<tr>
<th></th>
<th>IHC</th>
<th>MSI by FLA</th>
<th>MSI by NGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>>95%</td>
<td>>95%</td>
<td>>95%</td>
</tr>
<tr>
<td>Specificity</td>
<td>>95%</td>
<td>>95%</td>
<td>>95%</td>
</tr>
<tr>
<td>Cost (inc. overheads)</td>
<td>235€</td>
<td>226€</td>
<td>607(±207)€</td>
</tr>
<tr>
<td>Throughput</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Automated</td>
<td>Not routinely</td>
<td>Not routinely</td>
<td>Yes</td>
</tr>
<tr>
<td>Other markers tested</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>LS Screening</td>
<td>Multi-step</td>
<td>Multi-step</td>
<td>One-step</td>
</tr>
</tbody>
</table>

(Shia, 2008; Zhang 2008; Kautto et al, 2016; Zhu et al, 2018; Hampel et al, 2018; Marino et al, 2018; Snowsill et al, 2019)

Only 43% of young (30-49yrs) CRC patients are screened for LS (US statistics; Shaikh et al, 2018)

...lack of testing attributed to cost (33.3%), unfamiliarity interpreting results (29.2%), and unavailable genetic counselling (24.9%) (questionnaire of 509 gastroenterologists; Noll et al, 2018)
Considerations for MSI testing by NGS

<table>
<thead>
<tr>
<th>Sequencing platform</th>
<th>Error rate (e.g. Ion Torrent technology has high error microsatellite sequencing)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Availability (e.g. the dominance of Illumina platforms)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker identity</th>
<th>Sensitivity and specificity:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Length and motif (e.g. mono-, di-, tri-, tetra-nucleotide repeats)</td>
</tr>
<tr>
<td></td>
<td>• Genomic context</td>
</tr>
<tr>
<td></td>
<td>• Error rate</td>
</tr>
<tr>
<td></td>
<td>• Polymorphisms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification method</th>
<th>Calling instability at individual markers:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Matched normal DNAs, or reference set of control samples</td>
</tr>
</tbody>
</table>

Classification by proportion of markers that are “unstable”:
• All markers are equal...

<table>
<thead>
<tr>
<th>Marker number</th>
<th>Variable thresholds with different marker panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Threshold uncertainty with small (<20) marker panels</td>
</tr>
<tr>
<td></td>
<td>large panels = high cost</td>
</tr>
</tbody>
</table>
Marker selection from TCGA data:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mononucleotide repeats</td>
<td>Greatest sensitivity and specificity (Bacher et al, 2004)</td>
</tr>
<tr>
<td></td>
<td>Detection of MSH6 deficiency (You et al, 2010)</td>
</tr>
<tr>
<td>Short (7-12bp)</td>
<td>Reduced sequencing error (Fazekas et al, 2010)</td>
</tr>
<tr>
<td></td>
<td>Greatest discrimination between MSI-H and MSS samples by NGS (Maruvka et al, 2017)</td>
</tr>
<tr>
<td>Common SNP within 30bp</td>
<td>To assess allelic distribution of microsatellite deletions</td>
</tr>
<tr>
<td>Monomorphic</td>
<td>No need for matched normal DNA</td>
</tr>
</tbody>
</table>

120 candidate markers identified.
A Naïve Bayesian Approach to MSI Classification

Library preparation:

- **PCR$_1$:** Singleplex amplification
 - Amplicon pooling per sample
 - Amplicon purification (AMPure XP Beads, Beckman Coulter)
 - **PCR$_2$:** Addition of sample indexes and sequencing adaptors
 - Amplicon purification, dilution and pooling

Sequencing and analysis:

- Amplicon sequencing, target depth of 5000x (MiSeq, Illumina)
 - Read alignment to reference genome (BWA, Li & Durbin, 2010)
 - Detection of microsatellite deletion frequency and allelic distribution

Discovery cohort:

- 58 CRCs of known MSI status*
- Selection of 17 markers based on ROC AUCs

*MSI by FLA (Promega)
A Naïve Bayesian Approach to MSI Classification

Classifier training cohort:

• 139 CRCs of known MSI status*

• MSI classification using microsatellite deletion frequency and allelic distribution

*MSI by FLA (Promega)
A Naïve Bayesian Approach to MSI Classification

Classifier training cohort:

- 139 CRCs of known MSI status*
- MSI classification using microsatellite deletion frequency and allelic distribution

*MSI by FLA (Promega)
A Naïve Bayesian Approach to MSI Classification

Classifier training cohort:

- 139 CRCs of known MSI status*
- MSI classification using microsatellite deletion frequency and allelic distribution
- 100% sensitivity and 100% specificity

Validation cohort:

- 70 CRCs of known MSI status*
- 97% sensitivity and 97% specificity
- Discordance resolved in 3 of 4 samples

*MSI by FLA (Promega)

Probability from assay observations:

\[
p(O|MSI) \frac{p(O|MSI)}{p(O|MSS)} = \prod_{i=1}^{N} p(O_i|MSI) \frac{p(O_i|MSI)}{p(O_i|MSS)}
\]

Calculating assay score:

\[
score = \log_{10} \left(\frac{p(\text{MSI}) \cdot p(O|MSI)}{p(\text{MSS}) \cdot p(O|MSS)} \right)
\]

prior probability = 0.15/0.85
A Low Cost Sequencing-based MSI Assay for Clinical Diagnostics

24 MNRs and *BRAF* multiplexed by single molecule molecular inversion probes (smMIPs):

Followed recommendations for the validation of NGS-based oncology assays for clinical diagnostics (Association of Molecular Pathology, College of American Pathologists; Jennings *et al*, 2017).
A Low Cost Sequencing-based MSI Assay for Clinical Diagnostics

Validation of diagnostic accuracy:

- Sample number and type
- Independent cohorts
- Reproducibility

Quality controls (QCs):

- Detection limits
- Internal quality checks of library complexity

Clinical utility:

- Sample identification
A Low Cost Sequencing-based MSI Assay for Clinical Diagnostics

Classifier training and validation:

100% sensitivity and 100% specificity using either 24 or 6 markers
A Low Cost Sequencing-based MSI Assay for Clinical Diagnostics

Assessing detection limits using sample mixtures:

3-6% MSI-H cell line DNA can be detected in mixtures – equivalent to MSI by FLA
A Low Cost Sequencing-based MSI Assay for Clinical Diagnostics

Molecular barcodes (MBs) provide an internal QC of sequencing:

>75 MBs/marker ensures results reliability
A Low Cost Sequencing-based MSI Assay for Clinical Diagnostics

Assessing assay reproducibility and portability:

Research laboratory

- 32 CRCs repeat tested from amplification through to classification

<table>
<thead>
<tr>
<th>24 marker panel</th>
<th>6 marker panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% concordance</td>
<td>100% concordance</td>
</tr>
<tr>
<td>Score correlation $R^2 = 0.97$</td>
<td>Score correlation $R^2 = 0.97$</td>
</tr>
</tbody>
</table>

3 samples had <75 MBs/marker but still correctly classified, in-line with in silico predictions.
A Low Cost Sequencing-based MSI Assay for Clinical Diagnostics

Assay summary:

<table>
<thead>
<tr>
<th></th>
<th>24 MNRs plus Braf</th>
<th>6 MNRs plus Braf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>>95% sens. + spec.</td>
<td>>95% sens. + spec.</td>
</tr>
<tr>
<td>Detection limit</td>
<td>>3% MSI-H DNA</td>
<td>>6% MSI-H DNA</td>
</tr>
<tr>
<td>Quality control</td>
<td>>75 MBs/marker</td>
<td>>75 MBs/marker</td>
</tr>
<tr>
<td>LS screening</td>
<td>One-step</td>
<td>One-step</td>
</tr>
<tr>
<td>Sample identification</td>
<td>pr(SNP match) = 3.6x10^{-10}</td>
<td>pr(SNP match) = 3.8x10^{-3}</td>
</tr>
<tr>
<td>Reagent cost</td>
<td><20€ per sample</td>
<td><10€ per sample</td>
</tr>
</tbody>
</table>

Future work:

- Commercialisation (Cancer Research UK Commercial Partnerships)
- Continued validation and accreditation (Northern Genetics Service, Newcastle Hospitals)
- Application to extra-colonic cancers
Tumour Type

<table>
<thead>
<tr>
<th>Tumour Type</th>
<th>Percentage MSI-H (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>50.0% (21.5% - 78.4%)</td>
</tr>
<tr>
<td>Colorectal</td>
<td>94.0% (83.8% - 97.9%)</td>
</tr>
<tr>
<td>Endometrial</td>
<td>74.4% (58.9% - 85.4%)</td>
</tr>
<tr>
<td>Other GI</td>
<td>50.0% (2.6% - 97.4%)</td>
</tr>
<tr>
<td>Ovarian</td>
<td>85.7% (48.7% - 99.3%)</td>
</tr>
<tr>
<td>Prostate</td>
<td>0.0% (0.0% - 94.9%)</td>
</tr>
<tr>
<td>Sebaceous Adenoma</td>
<td>100.0% (67.6% - 100.0%)</td>
</tr>
<tr>
<td>Other Skin</td>
<td>40.9% (38.7% - 76.7%)</td>
</tr>
<tr>
<td>Urothelial</td>
<td>100.0% (56.6% - 100.0%)</td>
</tr>
</tbody>
</table>
Detection of Constitutional Mismatch Repair Deficiency

Low-level MSI in non-neoplastic tissues is detectable with an alternative analysis pipeline:

ROC AUC: 1.00

Dotted lines represent *a priori* score thresholds of 1.30 (95% probability not a control sample), and 2.00 (99% probability not a control sample).

Using a threshold of 2.00, the assay has 97% sensitivity, and 100% specificity.

Notes:

† homozygous for a hypomorphic PMS2 variant

§ patient 8 (3 samples all with low scores) was recovering from aplasia at sample collection
What is the next generation of MSI testing?

Heterogeneous, due to:

• New developments – e.g. automation of IHC
• Compatibility with established clinical pathways
• Cost versus resource
• Local expertise
• Local infrastructure

Diagnostic niche for low cost sequencing-based MSI assays

richard.gallon@newcastle.ac.uk
Special thanks to:

The Barbour Foundation for funding my PhD.

My PhD supervisory team, Mauro Santibanez-Koref, Mike Jackson, and John Burn.

My colleagues Christine Hayes, and Harsh Sheth.

richard.gallon@newcastle.ac.uk
Additional thanks to:

The CaPP3 clinical trial team: Gill Borthwick, Donna Job, Jackie Greenwood, Lynn Reed, Lynne Longstaff, and Amy McAllister.

richard.gallon@newcastle.ac.uk