Are tumor budding and tumor grade the same (equivalent) in colorectal cancer?

Prof. Inti Zlobec
Translational Research Unit
Institute of Pathology
University of Bern

European Congress of Pathology, Nice, 2019
Definition of tumor grade?

> 1920s: Broders «undifferentiated cancer cells at the invasive areas of the lip»

> 1932: Dukes «ignore these cells» in rectal cancer

> 1939: Grinnel infiltrating margins have lots of these undifferentiated cells

...

> 1987/1988:
 — Jass – tumor margin is prognostic and grade should be based on the WORST pattern
 — Halvorsen and Seim – suggested well, moderate, poor, grade should be based on PREDOMINANT pattern

Tumor grade (WHO 2010)

G1 (>95% glandular formation) G2 (50-95% glandular formation) G3 (<50% glandular formation)
Tumor budding (ITBCC)

BD1 (0-4 buds/0.785 mm²) BD2 (5-9 buds/0.785 mm²) BD3 (10 pr more buds/0.785 mm²)

Lugli et al, Mod Pathol 2017- ITBCC recommendation
Aim

To determine the correlation of tumor grade and tumor budding in colorectal cancer and their impact on outcome
Materials and Methods

1090 patients diagnosed at UniBern

- Neoadjuvantly treated

Missing information G and BD

771 patients

Analysis of tumor grade & tumor budding with clinicopathological features

Missing information on OS and DFS

443 patients

Analysis of OS and DFS
Tumor grade and tumor budding are correlated but…

- 771 patients
- 72.6% are G2
- Highly correlated \((p<0.0001)\)
- Percent-concordance: 33.8%
Association with clinicopathological features

<table>
<thead>
<tr>
<th></th>
<th>Tumor Grade, G</th>
<th>Tumor Budding, BD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histological type</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tumor location</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>pT</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>pN</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>V</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pn</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Expanding tumor border</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Klintrup-Mäkinen</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MMR status</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Association of tumor grade with OS and DFS

- **OS**
 - G1
 - G2
 - G3
 - $p=0.3151$

- **DFS**
 - G1
 - G2
 - G3
 - $p=0.2542$
Association of tumor budding with OS and DFS

$$p = 0.0286$$

$$p = 0.001$$
Discussion

- Both features reflect more aggressive cancers
- They contribute different information
- Reflect different processes (de-differentiation vs EMT)
 — Shown in DFS differences and certain associations
- More (tumor grade) or (less) subjective parameters
 — Actual No. tumor buds vs estimated % glandular formation
 — Interobserver variability is better (tumor budding) or worse (tumor grade)
- Both should still be reported

Meyer et al, Hum Pathol 2019
Acknowledgments

> Alessandro Lugli
> Heather Dawson
> Annika Blank
> Martin D. Berger

> John-Melle Bokhorst
> Iris Nagtegaal