Deep learning enables fully automated mitotic density assessment in breast cancer histopathology

Maschenka Balkenhol
PhD Student & Pathology Resident
Radboud University Medical Center, Department of Pathology
Nijmegen, the Netherlands
No disclosures
Prognostic value of grading for breast cancer using deep learning techniques
Breast cancer grading

Level of tubule formation
- Score 1: > 75%
- Score 2: 10-75%
- Score 3: <10%

Nuclear pleomorphism
- Score 1: comparable to normal epithelium
- Score 2: enlarged, vesicular, small nucleoli
- Score 3: pleomorphic, vesicular, large nucleoli

Mitotic activity
- Score 1: 0 through 7 mitoses per 2 mm²
- Score 2: 8 through 12 mitoses per 2 mm²
- Score 3: 13 or more mitoses per 2 mm²

But....
Tellez et al. *Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-Invariant Convolutional Networks.* Transactions on Medical Imaging
90 breast cancer cases from routine diagnostics
mitotic activity score 1 / 2 / 3 equally balanced in set
Algorithm

Observer 1

Observer 2

Balkenhol et al. *Deep learning assisted mitotic counting for breast cancer*. Laboratory Investigation, 2019

False negative detection of algorithm

Algorithm

False positive detection of algorithm

Balkenhol et al. *Deep learning assisted mitotic counting for breast cancer*. Laboratory Investigation, 2019
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Kappa</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs1-glass vs Obs2-glass</td>
<td>0.689</td>
<td>0.835</td>
</tr>
<tr>
<td>Obs1-hotspot vs Obs2-hotspot</td>
<td>0.814</td>
<td>0.852</td>
</tr>
</tbody>
</table>

Balkenhol et al. *Deep learning assisted mitotic counting for breast cancer*. Laboratory Investigation, 2019
<table>
<thead>
<tr>
<th></th>
<th>Kappa</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs1-glass vs Obs2-glass</td>
<td>0.689</td>
<td>0.835</td>
</tr>
<tr>
<td>Obs1-hotspot vs Obs2-hotspot</td>
<td>0.814</td>
<td>0.852</td>
</tr>
<tr>
<td>Obs1-glass vs Obs1-hotspot</td>
<td>0.698</td>
<td>0.808</td>
</tr>
<tr>
<td>Obs2-glass vs Obs2-hotspot</td>
<td>0.684</td>
<td>0.764</td>
</tr>
<tr>
<td>Comparison</td>
<td>Kappa</td>
<td>ICC</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Obs1-glass vs CNN</td>
<td>0.604</td>
<td>0.828</td>
</tr>
<tr>
<td>Obs2-glass vs CNN</td>
<td>0.609</td>
<td>0.757</td>
</tr>
<tr>
<td>Obs1-hotspot vs CNN</td>
<td>0.654</td>
<td>0.895</td>
</tr>
<tr>
<td>Obs2-hotspot vs CNN</td>
<td>0.794</td>
<td>0.888</td>
</tr>
</tbody>
</table>

Balkenhol et al. *Deep learning assisted mitotic counting for breast cancer*. Laboratory Investigation, 2019
We conclude that

- manual counting of mitotic figures in WSI is feasible
- manual mitosis counting is not affected by assessment modality (glass slides, WSI)
- using a predefined hotspot area considerably improves reproducibility
- fully automated assessment of mitotic score appears to be feasible without introducing additional bias or variability
More mitoses \rightarrow worse prognosis

For all breast cancer patients?

Bult, P et al. *In primary breast cancer the mitotic activity yields similar prognostic information as the histological grade: a study with long-term follow-up*. Breast Cancer Res Treat. 122, 77-86 (2010)
Triple negative breast cancer (TNBC) prognosis

Distant recurrence

Survival after recurrence

Triple negative breast cancer cohort (n = 597)

Eastern Netherlands 2006 - 2014, stage I-III, non neo-adjuvant treated

• **Manual assessment mitotic count (on half of cohort)**

 2 pathologists & 1 pathologist in training, conventional mitotic counting on glass slides

• **Automatic assessment mitotic count (on total cohort)**

 Hotspot as 2 mm2 circle

Average across 3 human observers: 1 mitosis per 2 mm2

Deep learning algorithm: 5 mitoses per 2 mm2
Average across 3 human observers: 187 mitosis per 2 mm²
Deep learning algorithm: 269 mitoses per 2 mm²
c-statistic values:

Relapse free survival: 0.739
Overall survival: 0.755
This is the first study

• in which the prognostic value of the mitotic count is evaluated for TNBC
• in which a deep learning network is used to assess the mitotic count

Our study suggests that

• the absolute number of mitotic count is not a prognostic factor for TNBC
• and that using a deep learning algorithm for mitosis counting is feasible

However, this should be validated in larger, independent cohorts.