The prognostic value of the tumor-stroma ratio validates in subgroups of breast cancer, especially in grade III tumours.
Tumor-stroma interaction

• The stroma surrounding cancer cells plays an important role in the development and behavior of the tumor.

• Studies including cell isolation, gene expression and cultures demonstrated that stroma can promote cancer and influences outcome.
Tumor-stroma ratio (TSR)

- The TSR is based on the amount of stroma within the primary tumor.
 stroma-high = worse patient outcome.

- Scoring of TSR is performed at routine pathology analysis in short time (<2 min), without additional costs and is highly reproducible (K>0.80).
Review literature

The prognostic value of tumour–stroma ratio in primary breast cancer with special attention to triple-negative tumours: a review

C. J. H. Kramer1 · K. M. H. Vangangel1 · G. W. van Pelt1 · T. J. A. Dekker1 · R. A. E. M. Tollenaar1 · W. E. Mesker1

Published online: 9 October 2018 © The Author(s) 2018

Abstract

Purpose There is a strong need to improve the prognostication of breast cancer patients in order to prevent over- and undertreatment, especially when considering adjuvant chemotherapy. Tumour stroma characteristics might be valuable in predicting disease progression.

Methods Studies regarding the prognostic value of tumour–stroma ratio (TSR) in breast cancer are evaluated.

Results A high stromal content is related to a relatively poor prognosis. The most pronounced prognostic effect of this parameter seems to be observed in the triple-negative breast cancer (TNBC) subtype.

Conclusions TSR assessment might represent a simple, fast and reproducible prognostic factor at no extra costs, and could possibly be incorporated into routine pathological diagnostics. Despite these advantages, a robust clinical validation of this parameter has yet to be established in prospective studies.

Keywords Breast cancer · Triple-negative breast cancer · Tumour–stroma ratio · Prognosis · Review

Good prognostic parameter for BC overall and TNBC, but applicability in other subgroups may differ.
Validation in large study with clinical subgroups

• The prognostic value of TSR in clinically relevant subgroups is evaluated.
 Age, grade, size, histological type, PR status, ER status, HER2 status, TN status, lymph node status.

• Whole tissue slides of 1809 primary BC patients from the Nottingham Breast Cancer Series (patients <70 years, M0).

• Validation in cohort of 737 Dutch patients from the Antoni van Leeuwenhoek.

• TSR was visually assessed on digital H&E stained slides.
Tumor-stroma ratio (TSR)
Nottingham Breast Cancer series: TSR

Univariate
RFS: HR 1.19, 95% CI 1.19-1.78, \(P < 0.001 \)
BCSS: HR 1.60, 95% CI 1.25-2.04, \(P < 0.001 \)

Multivariate
RFS: HR 1.35, 95% CI 1.10-1.66, \(P = 0.004 \)
BCSS: HR 1.51, 95% CI 1.18-1.95, \(P = 0.001 \)

Observer variation TSR scoring: K>0.87
Nottingham Breast Cancer series: TSR combined with grade and triple negative status

Multivariate Cox regression analyses showed the highest effect of the TSR for RFS in:
Grade III: HR 1.89, 95% CI 1.43-2.51, $P < 0.001$
Triple negative: HR 1.86, 95% CI 1.10-3.14, $P = 0.020$

Data are confirmed in the AvL series
Conclusions

- TSR can be scored on routine H&E sections and on digital images.

- Strong survival difference for stroma-low and stroma-high patients.

- The prognostic value of the TSR is most pronounced in grade III tumors and triple negative tumors.

- The prognostic value of the TSR is not influenced by age, tumor size, histology, ER status, PR status, HER2 status and lymph node status.
In the prospective DIRECT and NEOZOTAC trials the association between TSR before treatment and efficacy of neoadjuvant chemotherapy in HER2 negative breast cancer patients was evaluated.

Stroma-low was associated with a better pathological complete response (pCR Miller and Payne) (OR 2.570, 95%CI 1.343-4.919, P=0.004).
Benefit for the patient

- Validation of the TSR in a prospective study
- Further improve clinical decision making for chemotherapy
- Implementation in the PREDICT tool
Know more?

www.watchstroma.com/
Collaboration

Kiki Vangangelt
Isabelle Heemskerk
Gabi van Pelt
Rob Tollenaar

Danielle Cohen

Hein Putter

Andy Green
Emad Rakha

Marcello Sobral-Leite
Marjanka Schmidt

Department of Surgery, LUMC, Leiden, The Netherlands
Department of Pathology, LUMC, Leiden, The Netherlands
Department of Biomedical Data Sciences, LUMC, The Netherlands
Nottingham Breast Cancer Research Center, Nottingham City Hospital, UK.
Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands