Ki-67 and MCM6 labelling indices are correlated with overall survival in anaplastic oligodendroglioma, IDH1-mutant and 1p/19q-codeleted: a multicenter study from the French POLA network.

Celso Pouget*, M.D. (1,2), Sébastien Hergalant* (2), Emilie Lardenois, M.D. (1,2), Stéphanie Lacomme (3), Rémi Houlgatte, Ph.D. (2), Catherine Carpentier (4), Caroline Dehais, M.D. (5), Fabien Rech, M.D. (6,7), Luc Taillardier, M.D., Ph.D. (8), Marc Sanson, M.D., Ph.D. (4,5,9), Romain Appay, M.D. (10,11), Carole Colin, Ph.D. (10), Dominique Figarella-Branger, M.D., Ph.D. (10,11), Shyue-Fang Battaglia-Hsu, Pharm.D.,Ph.D. (2), Guillaume Gauchotte, M.D., Ph.D. (1,2,3)

31st European Congress of Pathology, September 9th, Nice, France
INTRODUCTION

• AO IDHmut+/ 1p19qcodeletion : high grade gliomas (grade III WHO 2016)

• Prognostic factors
 • Clinical : age, Karnofsky, surgery, adjuvant radiochemotherapy
 • Histological : MV proliferation, mitotic index, necrosis, grade?
 • Molecular : CIC, $TCF12$, allelic loss 9p21.3
 • Machine learning : copy number variations

• Immunohistochemical :
 • Ki-67 : no clear cutoff, studies before WHO 2016
INTRODUCTION

• **MCM6**: Minichromosome Maintenance Complex component 6

 • Role in DNA synthesis, replication
 • Detectable during phases G1, S, G2 and M (absent in G0)

 • Prognostic role
 • solid tumors (NSCLC, HCC), mantle cell lymphomas
 • Meningioma, craniopharyngiomas, gliomas
OBJECTIVES

1. Evaluate/compare by immunohistochemistry the prognostic value of MCM6 and Ki-67 in AO IDHmut+/1p19qcode1 in a series from the french national multicenter POLA Network

2. Identify functional pathways dysregulated with the mRNA overexpression of these two markers using transcriptomics
MATERIAL AND METHODS

Population

• 231 cases of IDH1mut+/1p19q codel AO
 • Tissue micro-array (TMA) : 220 available
 • Centrally reviewed (WHO 2016), clinical database
• 30 cases of IDHmut+/1p19q codel oligodendrogliomas (grade II)

Ki-67 and MCM6 evaluation

• Cell counting using computerized color image analyzer
• 1-3 TMA spots/ case
• Percentage of positive nuclear stain
MATERIAL AND METHODS

• Statistics
 • Non parametrics tests
 • Overall survival (OS) \rightarrow log-rank test and Cox model univariate and multivariate analyses
 • p-value < 0.05 = significant

• Transcriptomics
 • 68 cases from the POLA Network
 • MCM6- and MKI67-up / MCM6- and MKI67-down
 • K-means clustering, functional annotations, enrichment computations
 • Results compared with TCGA cohort
RESULTS
Clinicopathological data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean; min-max)</td>
<td>49; 19-80 years</td>
</tr>
<tr>
<td>Sex</td>
<td>Male-to-female ratio: 1.22:1 (121/99)</td>
</tr>
<tr>
<td>Surgery</td>
<td>Biopsy: 4.1% (9/220)</td>
</tr>
<tr>
<td></td>
<td>Total resection: 32.7% (72/220)</td>
</tr>
<tr>
<td></td>
<td>Subtotal Resection 30.9% (68/220)</td>
</tr>
<tr>
<td></td>
<td>Partial Resection 20.9% (46/220)</td>
</tr>
<tr>
<td></td>
<td>Missing data 11.4% (25/220)</td>
</tr>
<tr>
<td>Type of treatment</td>
<td>RT-PCV: 32.3% (71/220)</td>
</tr>
<tr>
<td></td>
<td>Radiotherapy: 29.1% (64/220)</td>
</tr>
<tr>
<td></td>
<td>PCV: 2.3% (5/220)</td>
</tr>
<tr>
<td></td>
<td>Stupp protocol: 20.9% (46/220)</td>
</tr>
<tr>
<td></td>
<td>Temozolomide: 4.1% (9/220)</td>
</tr>
<tr>
<td></td>
<td>Other: 0.5% (1/220)</td>
</tr>
<tr>
<td></td>
<td>No treatment: 6.4% (14/220)</td>
</tr>
<tr>
<td></td>
<td>Missing data: 3.6% (8/220)</td>
</tr>
<tr>
<td>Survival</td>
<td>Progression: 30.7% (71/220)</td>
</tr>
<tr>
<td></td>
<td>Death: 8.2% (19/220)</td>
</tr>
<tr>
<td>Molecular Data</td>
<td>$TERT$ promoter mutation: 98.3% (216/220)</td>
</tr>
<tr>
<td></td>
<td>CIC loss: 61% (141/220)</td>
</tr>
</tbody>
</table>

MCM6 mean LI: 24% (range 0.1-87%; median 21.4%)

Ki-67 mean LI = 6.3% (range 0.1-36.9%; median 3.7%)

RT-PCV, radiation therapy – procarbazine, CCNU (lomustine), and vincristine.
Overall survival (Kaplan-Meier method)

A
MCM6 mean LI (%)
- Lesser than 50%
- Equal to or greater than 50%

B
Ki-67 mean LI (%)
- Lesser than 15%
- Equal to or greater than 15%

C
Ki-67 and/or MCM6
- Ki-67 < 15% and MCM6 < 50%
- Ki-67 ≥ 15% and/or MCM6 ≥ 50%

Results
- **MCM6**
 - $P = 0.013$
- **Ki-67**
 - $P = 0.001$
- **Ki-67 and/or MCM6**
 - $P = 0.004$
Univariate and multivariate analyses for OS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cox univariate (OS)</th>
<th>Cox multivariate (OS)</th>
<th>Cox multivariate (OS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR [95%CI]</td>
<td>p-value</td>
<td>HR [95%CI]</td>
</tr>
<tr>
<td>Age</td>
<td>1.055 [1.021-1.091]</td>
<td>0.001*</td>
<td>1.060 [1.020-1.103]</td>
</tr>
<tr>
<td>Mitotic index $\geq 8 / 1.6 \text{ mm}^2$</td>
<td>2.587 [1.177-5.686]</td>
<td>0.018*</td>
<td>1.439 [0.538-3.851]</td>
</tr>
<tr>
<td>MCM6 LI $\geq 50%$</td>
<td>3.283 [1.221-8.826]</td>
<td>0.018*</td>
<td>2.896 [0.964-8.702]</td>
</tr>
<tr>
<td>Ki-67 LI $\geq 15%$</td>
<td>3.948 [1.442-10.41]</td>
<td>0.008*</td>
<td>2.713 [0.935-7.875]</td>
</tr>
<tr>
<td>MCM6 LI $\geq 50%$ and/or Ki-67 LI $\geq 15%$</td>
<td>3.875 [1.603-9.370]</td>
<td>0.003*</td>
<td></td>
</tr>
</tbody>
</table>

HR, hazard ratio; LI, labelling index; OS, overall survival; * statistically significant ($P < 0.05$).
<table>
<thead>
<tr>
<th>GO biological process</th>
<th>Fold enrichment</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell cycle DNA replication initiation (GO:0102292)</td>
<td>22.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>DNA strand elongation involved in cell cycle DNA replication (GO:0102296)</td>
<td>21.7</td>
<td>0.0001</td>
</tr>
<tr>
<td>Ndc80 complex (GO:031262)</td>
<td>21.7</td>
<td>0.0001</td>
</tr>
<tr>
<td>Pre-replicative complex assembly (GO:036388)</td>
<td>21.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>Condensed nuclear chromosome kinetochore (GO:017704)</td>
<td>15.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mitotic centrosome separation (GO:017700)</td>
<td>15.2</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mitotic chromosome condensation (GO:017706)</td>
<td>14.8</td>
<td><0.0001</td>
</tr>
<tr>
<td>IRES-dependent translational initiation (GO:02192)</td>
<td>14.6</td>
<td>0.0001</td>
</tr>
<tr>
<td>Aster (GO:05818)</td>
<td>13.8</td>
<td>0.0001</td>
</tr>
<tr>
<td>Exodeoxyribonuclease activity (GO:04529)</td>
<td>12.6</td>
<td>0.003</td>
</tr>
<tr>
<td>Mitotic prophase (GO:088)</td>
<td>12.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Regulation of transcription involved in G1/S transition (GO:083)</td>
<td>11.9</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

FDR, false discovery rate; GO, gene ontology.

<table>
<thead>
<tr>
<th>GO biological process</th>
<th>Fold enrichment</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensin complex (GO:05796)</td>
<td>50.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>Replication fork protection complex (GO:031298)</td>
<td>42.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>DNA strand elongation involved in cell cycle DNA replication (GO:0102296)</td>
<td>40.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Ndc80 complex (GO:031262)</td>
<td>40.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Pre-replicative complex assembly (GO:036388)</td>
<td>35.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Condensed nuclear chromosome kinetochore (GO:017704)</td>
<td>31.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>MCM complex (GO:042555)</td>
<td>28.1</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mitotic centrosome separation (GO:017700)</td>
<td>28.1</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mitotic chromosome condensation (GO:017706)</td>
<td>27.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Kinetochore microtubule (GO:03828)</td>
<td>25.5</td>
<td>0.0001</td>
</tr>
<tr>
<td>Aster (GO:05818)</td>
<td>25.5</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

FDR, false discovery rate; GO, gene ontology.
A

- MCM6 down
- MCM6 up
- MKI67 down
- MKI67 up

B

- c0 84.6%
- c1 99.9%
- c2 95.0%
- c3 98.1%
- c4 93.6%
- c5 95.0%
- c6 96.4%
- c7 99.9%
- c8 94.6%
- c9 97.5%

Cluster c1 - Synaptic activity
- Positive regulation of short / long term synaptic potentiation
- Dopamine / catecholamine / GABAergic synapse
- Oxidative stress-induced apoptotic pathway
- Corticosterone / glutamate secretion
- Axon / dendrite extension

Cluster c2 - Glial and neural cells
- Neuron ensheathment
- Dendritic cell differentiation / apoptotic process
- Glial cell development
- Immune response
- Water-soluble vitamin biosynthetic process
- Long-chain fatty acid metabolic process
- Glutathione metabolism

Cluster c3 - Replication and mitotic cell cycle
- Helicase - THO / MCM complexes
- Transcription - spliceosome
- Translation - chaperin complex
- Negative regulation of histone H3-K9 methylation
- Positive regulation of histone H3-K4 methylation
- Histone exchange
- Regulation of DNA damage
- Double-strand break repair via homologous recombination

Cluster c7 - Cell cycle (continued)
- Transcription - ncRNA / snoRNA
- Translation - Ribosome / ER
- G1 and G2 checkpoints / progression

Cluster c6
- Dicarboxylic acid catabolic process
- Nitric oxide mediated signal transduction
- Alpha amino acid metabolic process
Grades II and III IDH-mutant 1p19q codeleted oligodendrogliomas - TCGA cohort of 98 samples

A

MCM6 median expression (from grade II)

MCM6 down

MCM6 up

B

Mitotic cell cycle – replication: POLA c3+c7 (ID=73.6%)

Myelin sheath – glial cell differentiation: POLA c2 (ID=60.6%)

Mitochondria (oxphos) – methylosome: POLA c7 (ID=30.1%)

Inflamasome - positive regulation of immune response: POLA c2 (ID=48.2%)

Axoneme – oxoacid metabolic process – IL5 production: POLA c6 (ID=48.2%)

Histone modification – transcription – DNA repair: POLA c3+c7 (60.7%)

Synaptic activity – neuron development: POLA c1 (ID=53.4%)

C

Cluster1 = 6.80e-13

Cluster2 = 5.16e-09

Cluster3 = 1.01e-02

Cluster4 = 4.90e-02

Cluster5 = 4.34e-08

Cluster6 = 6.16e-02

Cluster7 = 6.64e-03
CONCLUSION

• Prognostic value of Ki-67 and MCM6 LI in AO IDHmut+/1p19q codel
 • Independently correlated to shorter survival in multivariate analyses
 • Easy-to-use and cost effective markers, could be used in routine practice
 • Could be integrated into therapeutic/clinico-radiological monitoring strategies

• Transcriptomic analyses
 • High proliferation \rightarrow down-regulated immune response and lower microglial cell activation

• Article under submission, Brain Pathology (major revisions)
Thank you for your attention!

• Acknowledgements

 • POLA Network for contributing
 • Pr Dominique Figarella-Branger
 • Team of CHRU Nancy Pathology Department for technical support
 • University of Lorraine