Clinicopathological characterization of gliomas with *H3 K27M* mutation: a case series

Pedro Amoroso Canão, Roberto Pestana Silva
Department of Pathology, Centro Hospitalar Universitário de São João, Porto, Portugal
Department of Pathology, Faculty of Medicine of the University of Porto, Porto, Portugal
Background

31st European Congress of Pathology
Pathology is Nice
7 – 11 September 2019, Nice, France

WHO Classification of Tumours of the Central Nervous System

Background
Diffuse midline glioma, H3 K27M-mutant

Background

Diffuse astrocytic and oligodendrogial tumours
- Diffuse astrocytoma, IDH-mutant
- Diffuse astrocytoma, IDH-wildtype
- Diffuse astrocytoma, NOS
- Anaplastic astrocytoma, IDH-mutant
- Anaplastic astrocytoma, IDH-wildtype
- Anaplastic astrocytoma, NOS
- Glioblastoma, IDH-wildtype
- Oligodendroglioma
- Anaplastic oligodendroglioma, IDH-mutated and/or 1p/19q-co-duplicated
- Anaplastic oligodendroglioma, IDH-wildtype
- Anaplastic oligodendroglioma, NOS
- Oligoastrocytoma, WHO Grade II / III

Other astrocytic tumours
- Pilocytic astrocytoma
- Pilocytic astrocytoma, NOS
- Subependymal giant cell astrocytoma
- Hemangioblastoma
- Anaplastic pleomorphic xanthoastrocytoma

Ependymal tumours
- Subependymoma
- Desmoplastic ependymoma
- Ganglioglioma
- Gliomatous gangliocytoma
- Desmoplastic infantile ganglioglioma
- Dendroglioma
- Dural ependymoma

Other gliomas
- Chordoid glioma of the third ventricle
- Arachnoid cyst
- Chordoid plexus tumours
- Chordoid plexus papilloma
- Chordoid plexus carcinoma

Neoplastic meningiomas
- Meningothelial meningioma
- Meningeal atypical meningioma
- Malignant meningioma

Leptomeningeal spread of tumour
- Extracranial spread of tumour
- Metastatic disease

Metastatic tumours
- Brain metastasis
- Primary/malignant brain tumours

WHO Classification of Tumours of the Central Nervous System

- 31st European Congress of Pathology
- Pathology is Nice
- 7 – 11 September 2019, Nice, France

Background

Histone 3 – variants:
H3.3 - \(H3F3A\) gene
H3.1 - \(HIST1H3B/C\) gene

Lysine residues
(K4, K9, K27, K36)

Histone Tails
Nucleosome core particle (NCP)

K27M
\(H3F3A\) gene (3x)

Gliomagenesis
Background

• Diffuse midline glioma, *H3 K27M*-mutant

 Median patient age: 5-11 years old
 (adults)

 No sex predilection

 Location: pons (children), thalamus and spinal cord (adults)
 cerebellum (occasionally)

 Histology
 High grade glioma with a predominant astrocytic differentiation

 10% - lack mitotic figures, microvascular proliferation and necrosis
Background

• Diffuse midline glioma, \textit{H3 K27M}-mutant

Median patient age: 5-11 years old (adults)

No sex predilection

Location: pons (children), thalamus and spinal cord (adults)
cerebellum (occasionally)

Histology

High grade glioma with a predominant astrocytic differentiation

WHO grade IV

2-year survival rate <10%

10% - lack mitotic figures, microvascular proliferation and necrosis
Background

• Diffuse midline glioma, \textit{H3 K27M}-mutant

- HIT-HGG protocol
- STUPP protocol

>70 years-old
Low performance status

Methylation of the \textit{MGMT} gene promoter

- Temozolomide
- Hypofractionated radiotherapy
Material and methods

Gliomas with \textit{H3 K27M} mutation
Portuguese tertiary centre
2016 – 2018

n=5

Clinicopathological features
Results

<table>
<thead>
<tr>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% n=2</td>
<td>60% n=3</td>
</tr>
</tbody>
</table>

Age at time of diagnosis (years old)

<table>
<thead>
<tr>
<th>Age</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Mean age (years old)

33.2
Results

- **80% (n=4)**
 - Corpus callosum
 - Basal ganglia
 - Thalamus
 - Amygdala

- **20% (n=1)**
 - Cerebellum
 - Brainstem
Results

MRI

T1 - Transversal

Iso/Hipointense (n=5)
Results

MRI

T2 - Transversal

Hyperintense (n=5)
Results

Infiltrative (n=2)

Well-defined (n=3)
Results

<table>
<thead>
<tr>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 - Transversal</td>
</tr>
</tbody>
</table>

Cystic/necrotic component (n=4)
Results

<table>
<thead>
<tr>
<th>MRI</th>
<th>T1 - Transversal with contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancement (n=4)</td>
<td></td>
</tr>
</tbody>
</table>
Results

High grade (n=4)

Low grade (n=1)
Results

80% (n=4)

20% (n=1)

Partial ressection
Stereotaxic biopsy

Partial ressection
Results

Histology

HE, 200x

High cellularity (n=4)

Moderate cellularity (n=1)
Results

<table>
<thead>
<tr>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitotic activity (400x)</td>
</tr>
<tr>
<td>Microvascular proliferation (200x)</td>
</tr>
<tr>
<td>Necrosis (200x)</td>
</tr>
</tbody>
</table>

- [0, 24] mitosis per 10 HPF
- 80% (n=4)
- 40% (n=2)
Results

Radiology

Histology

High grade (n=4)

Low grade (n=1)

High grade (n=4)

Low grade (n=1)
100% (n=5) - Astrocytic phenotype
20% (n=1) - Oligodendroglioma-like features
20% (n=1) - Pilomyxoid features
20% (n=1) - Rosette-like structures
Results

<table>
<thead>
<tr>
<th>Immunohistochemistry</th>
<th>GFAP</th>
<th>+ (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLIG-2</td>
<td>+ (n=5)</td>
<td></td>
</tr>
<tr>
<td>ATRX</td>
<td>Preserved (n=3)</td>
<td>Loss (n=1)</td>
</tr>
<tr>
<td>IDH1 (R132H)</td>
<td>Absent (n=5)</td>
<td></td>
</tr>
<tr>
<td>p53</td>
<td>Wild-type (n=4)</td>
<td>Overexpression (n=1)</td>
</tr>
<tr>
<td>Ki-67</td>
<td>Variable [1, 80]%</td>
<td></td>
</tr>
<tr>
<td>H3 K27M</td>
<td>+ (n=5)</td>
<td></td>
</tr>
</tbody>
</table>

NA: Not available
Results

- Molecular studies
 - Cerebellum

Results

• Treatment

<table>
<thead>
<tr>
<th>Age at diagnosis (years old)</th>
<th>HIT-HGG protocol</th>
<th>STUPP protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Hypofractionated radiotherapy
Results

• Follow-up

60% (n=3): Radiological progression → Death of disease

Mean survival: 12.3 months
Results

• Follow-up

7 months

STUPP protocol

Clinical and radiologically stable
Results

• Follow-up

17 months

STUPP protocol

Slight radiological progression

11th month - Stereotaxic surgery

Clinical and radiologically stable
Conclusions

• Diffuse midline glioma, *H3 K27M*-mutant

 • Heterogeneous tumour

• Not exclusively of paediatric population

• Importance of the diagnosis
 • WHO grade IV
 • Potential target therapy (e.g. Histone deacetylase inhibitors)
Conclusions

- Diffuse midline glioma, $H3\ K27M$-mutant
 - Diffuse midline glioma, IDH-1 wild-type
 - Can be low grade
 - Immunohistochemistry

- Effective tool
 - Nuclear staining
 - Internal negative control: endothelial cells

- Pitfalls
 - Nonspecific cytoplasmic staining (macrophages/microglia)
 - $HIST1H3B/C$ gene mutation
Conclusions

Other tumours with H3 K27M-mutant
- Ependymomas
- Pilocytic astrocytomas
- Pediatric diffuse astrocytomas
- Gangliogliomas

Immunohistochemistry
Molecular
Diffuse
Midline
Glioma
References

Clinicopathological characterization of gliomas with \textit{H3 K27M} mutation: a case series

Pedro Amoroso Canão, Roberto Pestana Silva
Department of Pathology, Centro Hospitalar Universitário de São João, Porto, Portugal
Department of Pathology, Faculty of Medicine of the University of Porto, Porto, Portugal