Imaging Mass Spectrometry to differentiate between pancreatic adenocarcinoma and cholangiocarcinoma

Kristina Schwamborn, MD PhD
Pancreatobiliary Neoplasias

Pancreatic ductal adenocarcinoma versus choriocarcinoma

Difficult Diagnostic Problems in Pancreatobiliary Neoplasia

Jacob R. Bledsoe, MD; Shweta A. Shinagare, MD; Vikram Deshpande, MD

Immunohistochemical distinction between intrahepatic cholangiocarcinoma and pancreatic ductal adenocarcinoma
Terry Lok BSa,1, Lihong Chen MD, PhDa,1,2, Fan Lin MD, PhDc, Hanlin L. Wang MD, PhDa,1,2

Immunohistochemical Markers Distinguishing Cholangiocellular Carcinoma (CCC) from Pancreatic Ductal Adenocarcinoma (PDAC) Discovered by Proteomic Analysis of Microdissected Cellsb
Juliet Paddena,2,3, Maike Ahrensa,2,3, Julia Kälscha,2,3, Stefanie Bertrama,2,3, Dominik A. Meggera,2,3, Thilo Brachta,2,3, Martin Eisenachera,2,3, Peri Kocabayoglua,2,3, Helmut E. Meyera,2,3, Benedek Simóa,2,3, Hideo A. Babaa,2,3,4, and Barbara Siteka,2,3,4

Annexin A10 optimally differentiates between intrahepatic cholangiocarcinoma and hepatic metastases of pancreatic ductal adenocarcinoma: a comparative study of immunohistochemical markers and panels
Julia Kälscha,2,3, Juliet Paddena,2,3, Stefanie Bertrama,2,3, Leona L. Potta,2,3, Henning Reisa,2,3, Daniela Westerwicka,2,3, Christoph M. Schaefera,2,3, Jan-P. Sowaa,2,3, Dorothée Möllmanna,2,3, Christian Fingasa,2,3, Alexander Decha,2,3, Barbara Stießa,2,3, Martin Eisenachera,2,3, Ali Canbaya,1,2, Maike Ahrensa,1,2,3, Hideo A. Babaa,1,2,3

The Novel Monoclonal Antibody HPC2 and N-cadherin Distinguish Metastatic Pancreatic Ductal Adenocarcinoma from Cholangiocarcinoma
Jody E. Hooper, M.D.,1,2 Terry K. Morgan, M.D., Ph.D.,1,2 Markus Grompe, M.D.,2 Brett C. Sheppard, M.D.,3,4 Megan L. Troxell, M.D., Ph.D.,1 Christopher L. Corless, M.D., Ph.D.,1,2 and Philip R. Streeter, Ph.D.,2
MALDI TOF MS

Matrix assisted laser desorption ionization time of flight mass spectrometry
Why Imaging Mass Spectrometry?

- Data can be obtained directly from intact tissue sections
 - no microdissection or tissue homogenization
- **Correlation with histology**
- Maps of molecular distribution throughout the tissue section
- Assessment of hundreds of analytes (e.g. proteins) in parallel
- **No need for target specific reagents** → ideal discovery tool
- Capable of high throughput
Imaging Mass Spectrometry (IMS)

- **Tissue slide**
- **Matrix application**
- **Laser ablation**
- **Tandem MS**
- **MS**
 - **MS/MS spectrum**
 - **Mass spectra for each x,y coordinate**
 - **Single m/z values**
 - **Biocomputational analysis**

- **Peptide fragments**
 - **Database search**
 - **Protein ID**
 - **Protein images**
 - **Classification images**

Modified from: Schwamborn and Caprioli, Nature Reviews Cancer 2010
Previous Study

- 33 pancreatic ductal adenocarcinomas (PDAC)
- 22 cholangiocarcinomas (CCC)

 (all duplicates)

Sensitivity CCC – 81.82%
Sensitivity PDAC – 71.05%
Tissue Microarrays

Cholangiocarcinoma (CCC) (3 TMAs, $N_{\text{total}} = 122$) triplicates

Pancreatic ductal adenocarcinoma (PDAC) (3 TMAs, $N_{\text{total}} = 107$) triplicates
Paraffin removal and antigen retrieval

FFPE tissue slide

Pneumatic sprayer
TM Sprayer, HTX Technologies

Trypsin application
0.025 µg/µl

Incubation @ 50ºC for 2h

Matrix application
10 mg/ml CHCA

Mass spectrometer
RapifleX, Bruker

Protocol: Ly et al., Proteomics Clin Appl. 2019
Tissue Microarrays – Histological Annotation

CCC

PDAC
Overall Sum Spectra
Methodology of Classification

60%
Training

20%
Validation

20%
Test

LDA
(linear discriminant analysis)
Results of Classification – PDAC

Pancreatic ductal adenocarcinoma:

Accuracy 90.48 %
(19/21 patients)

○ Correctly classified
○ Wrongly classified
Results of Classification – CCC

Choalangio-carcinoma:
Accuracy 100 % (22/22 patients)

Correctly classified
Wrongly classified
Conclusion
➢ Imaging Mass Spectrometry is an efficient and reliable tool for the classification of pancreatic ductal adenocarcinoma and cholangiocarcinoma
➢ Results can be achieved utilizing only a single tissue section

Outlook
➢ Identification of differentially peptides/proteins by MS/MS
➢ Validation of candidate proteins by IHC
➢ Applying the algorithm to samples from different institutions
Acknowledgments

Institute of Pathology
TUM, Munich

Wilko Weichert
Christine Bollwein
Melissa Schlitter
Juliana Pereira Lopes Gonçalves
Anne Jacob

Bruker Daltonik GmbH,
Bremen

Sören Oliver Deininger
Alice Ly
Jan Hendrik Kobarg
Dennis Trede