In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2
Achim Jungbluth, Denise Frosina, Cecilia Lezcano and Klaus Busam

Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA

European Society of Pathology
31st European Congress of Pathology
7-12/September/2019 – Nice, France
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)!
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)

In normal tissues solely expressed in testicular germ cells
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)

In normal tissues solely expressed in testicular germ cells

Expressed in various types of tumors
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)

In normal tissues solely expressed in testicular germ cells

Expressed in various types of tumors

Classical CT Antigens map to Chromosome X and have largely unknown function
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)

In normal tissues solely expressed in testicular germ cells

Expressed in various types of tumors

Classical CT Antigens map to Chromosome X and have largely unknown function

Examples: MAGE-A/B/C/D; NY-ESO-1; GAGE, SSX, XAGE and others
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)
In normal tissues solely expressed in testicular germ cells
Expressed in various types of tumors
Classical CT Antigens map to Chromosome X and have largely unknown function
Examples: MAGE-A/B/C/D; NY-ESO-1; GAGE, SSX, XAGE and others

Non-Classical (‘Non-X’) CT antigens map to other chromosomes & known function
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)

In normal tissues solely expressed in testicular germ cells

Expressed in various types of tumors

Classical CT Antigens map to Chromosome X and have largely unknown function

Examples: MAGE-A/B/C/D; NY-ESO-1; GAGE, SSX, XAGE and others

Non-Classical (‘Non-X’) CT antigens map to other chromosomes & known function

Melanoma, certain carcinomas & sarcomas high expressers
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)

In normal tissues solely expressed in testicular germ cells

Expressed in various types of tumors

Classical CT Antigens map to Chromosome X and have largely unknown function

Examples: MAGE-A/B/C/D; NY-ESO-1; GAGE, SSX, XAGE and others

Non-Classical (‘Non-X’) CT antigens map to other chromosomes & known function

Melanoma, certain carcinomas & sarcomas high expressers

Considered ideal vaccine targets for cancer immunotherapy
Identified by autologous T-cell cloning (prototype MAGE-A1)
In normal tissues solely expressed in testicular germ cells
Expressed in various types of tumors
Classical CT Antigens map to Chromosome X and have largely unknown function
Examples: MAGE-A/B/C/D; NY-ESO-1; GAGE, SSX, XAGE and others

Non-Classical (‘Non-X’) CT antigens map to other chromosomes & known function
Melanoma, certain carcinomas & sarcomas high expressers
Considered ideal vaccine targets for cancer immunotherapy
Can be used as diagnostic tools for surgical pathology
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)

In normal tissues solely expressed in testicular germ cells

Expressed in various types of tumors

Classical CT Antigens map to Chromosome X and have largely unknown function

Examples: MAGE-A/B/C/D; NY-ESO-1; GAGE, SSX, XAGE and others

Non-Classical (‘Non-X’) CT antigens map to other chromosomes & known function

Melanoma, certain carcinomas & sarcomas high expressers

Considered ideal vaccine targets for cancer immunotherapy

Can be used as diagnostic tools for surgical pathology

Knowledge about in-situ protein expression essential to assess value
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Identified by autologous T-cell cloning (prototype MAGE-A1)

In normal tissues solely expressed in testicular germ cells

Expressed in various types of tumors

Classical CT Antigens map to Chromosome X and have largely unknown function

Examples: MAGE-A/B/C/D; NY-ESO-1; GAGE, SSX, XAGE and others

Non-Classical (‘Non-X’) CT antigens map to other chromosomes & known function

Melanoma, certain carcinomas & sarcomas high expressers

Considered ideal vaccine targets for cancer immunotherapy

Can be used as diagnostic tools for surgical pathology

Knowledge about in-situ protein expression essential to assess value

Limited knowledge about many CT antigens - lack of suitable reagents (‘antibodies’)
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – CT Antigens

Expression in testis
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX

Identified as fusion partners of SYT in synovial sarcoma

Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma

Jeremy Clark, Philippe J. Rosquet, I. Jayne Creel, Sandra Giff, Janet Shipley, Andrew M.-L. Chan, Barry A. Gaster and Colin S. Cooper

Human synovial sarcomas contain a recurrent and specific chromosomal translocation t(X;18)(p11.2;q11.2). By screening a synovial sarcoma cDNA library with a yeast artificial chromosome spanning the X chromosome breakpoint, we have identified a hybrid transcript that contains 5’ sequences (designated SYT) mapping to chromosome 18 and 3’ sequences (designated SSX) mapping to chromosome X. An SYT probe detected genomic rearrangements in 10/13 synovial sarcomas. Sequencing of cDNA clones shows that the normal SYT gene encodes a protein rich in glutamine, proline and glycine, and indicates that in synovial sarcoma rearrangement of the SYT gene results in the formation of an SYT-SSX fusion protein. Both SYT and SSX fail to exhibit significant homology to known gene sequences.

Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma

Jeremy Clark, Philippe J. Rosquet, I. Jayne Creel, Sandra Giff, Janet Shipley, Andrew M.-L. Chan, Barry A. Gaster and Colin S. Cooper

Human synovial sarcomas contain a recurrent and specific chromosomal translocation t(X;18)(p11.2;q11.2). By screening a synovial sarcoma cDNA library with a yeast artificial chromosome spanning the X chromosome breakpoint, we have identified a hybrid transcript that contains 5’ sequences (designated SYT) mapping to chromosome 18 and 3’ sequences (designated SSX) mapping to chromosome X. An SYT probe detected genomic rearrangements in 10/13 synovial sarcomas. Sequencing of cDNA clones shows that the normal SYT gene encodes a protein rich in glutamine, proline and glycine, and indicates that in synovial sarcoma rearrangement of the SYT gene results in the formation of an SYT-SSX fusion protein. Both SYT and SSX fail to exhibit significant homology to known gene sequences.

Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma

Jeremy Clark, Philippe J. Rosquet, I. Jayne Creel, Sandra Giff, Janet Shipley, Andrew M.-L. Chan, Barry A. Gaster and Colin S. Cooper

Human synovial sarcomas contain a recurrent and specific chromosomal translocation t(X;18)(p11.2;q11.2). By screening a synovial sarcoma cDNA library with a yeast artificial chromosome spanning the X chromosome breakpoint, we have identified a hybrid transcript that contains 5’ sequences (designated SYT) mapping to chromosome 18 and 3’ sequences (designated SSX) mapping to chromosome X. An SYT probe detected genomic rearrangements in 10/13 synovial sarcomas. Sequencing of cDNA clones shows that the normal SYT gene encodes a protein rich in glutamine, proline and glycine, and indicates that in synovial sarcoma rearrangement of the SYT gene results in the formation of an SYT-SSX fusion protein. Both SYT and SSX fail to exhibit significant homology to known gene sequences.

Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma

Jeremy Clark, Philippe J. Rosquet, I. Jayne Creel, Sandra Giff, Janet Shipley, Andrew M.-L. Chan, Barry A. Gaster and Colin S. Cooper

Human synovial sarcomas contain a recurrent and specific chromosomal translocation t(X;18)(p11.2;q11.2). By screening a synovial sarcoma cDNA library with a yeast artificial chromosome spanning the X chromosome breakpoint, we have identified a hybrid transcript that contains 5’ sequences (designated SYT) mapping to chromosome 18 and 3’ sequences (designated SSX) mapping to chromosome X. An SYT probe detected genomic rearrangements in 10/13 synovial sarcomas. Sequencing of cDNA clones shows that the normal SYT gene encodes a protein rich in glutamine, proline and glycine, and indicates that in synovial sarcoma rearrangement of the SYT gene results in the formation of an SYT-SSX fusion protein. Both SYT and SSX fail to exhibit significant homology to known gene sequences.
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX

Identified as fusion partners of SYT in synovial sarcoma

Member of a multi-gene family, SSX1-SSX9
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX

Identified as fusion partners of SYT in synovial sarcoma

Member of a multi-gene family, SSX1-SSX9

Elicit autologous immune responses in melanoma/tumor patients (SEREX)
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX

Identified as fusion partners of SYT in synovial sarcoma

Member of a multi-gene family, SSX1-SSX9

Elicit autologous immune responses in melanoma/tumor patients (SEREX)

Function not fully understood – transcriptional regulation (via PcG)?

Smith et al., Clin Dev Immunol. 2010
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX

Identified as fusion partners of SYT in synovial sarcoma

Member of a multi-gene family, SSX1-SSX9

Elicit autologous immune responses in melanoma/tumor patients (SEREX)

Function not fully understood – transcriptional regulation (via PcG)?

Knowledge about in-situ expression limited
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX2

Most common fusion partner in synovial sarcoma
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX2

Most common fusion partner in synovial sarcoma

Identified in serum of synovial sarcoma patient by serological analysis of tumor expression library SEREX
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX2

Most common fusion partner in synovial sarcoma

Identified in serum of synovial sarcoma patient by serological analysis of tumor expression library SEREX

Interesting antigen as potential vaccine target
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX2

Most common fusion partner in synovial sarcoma
Identified in serum of synovial sarcoma patient by serological analysis of tumor expression library SEREX
Interesting antigen as potential vaccine target
Limited and contradictory data about expression, mostly rt-PCR based
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX2 Expression

Published Expression Data
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

<table>
<thead>
<tr>
<th>Tumor</th>
<th>mRNA</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>25%; 2%; 12%</td>
<td>Tureci, 1996; Mashino, 2001; Tureci, 1998</td>
</tr>
<tr>
<td>Esophag. Ca</td>
<td>0%</td>
<td>Mashino, 2001</td>
</tr>
<tr>
<td>Gastric Ca</td>
<td>3%; 0%</td>
<td>Mashino, 2001; Tureci, 1998</td>
</tr>
<tr>
<td>RCC</td>
<td>0%; 5%</td>
<td>Tureci, 1996; Tureci, 1998</td>
</tr>
<tr>
<td>HCC</td>
<td>30%</td>
<td>Tureci, 1996;</td>
</tr>
<tr>
<td>Melanoma</td>
<td>50%; 2.5%</td>
<td>Tureci, 1996; Li, 2005</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>72%</td>
<td>Chi, 2002;</td>
</tr>
<tr>
<td>Breast Ca.</td>
<td>20%; 8%; 4%</td>
<td>Tureci, 1996; Mischo, 2005; Mashino, 2001</td>
</tr>
<tr>
<td>NHL</td>
<td>3%</td>
<td>Xie, 2002</td>
</tr>
<tr>
<td>HL</td>
<td>50% (ISH)</td>
<td>Colleoni, 2002</td>
</tr>
<tr>
<td>NSCLC</td>
<td>0%; 12%, 10%; 17%</td>
<td>Tureci, 1996; Tajima, 2003; Gure, 2005; Tureci, 1998</td>
</tr>
<tr>
<td>Syn. Sarc.</td>
<td>50%</td>
<td>Tureci, 1998</td>
</tr>
<tr>
<td>Seminoma</td>
<td>0%</td>
<td>Tureci, 1998</td>
</tr>
<tr>
<td>Ovarian Ca</td>
<td>0%</td>
<td>Tureci, 1998</td>
</tr>
<tr>
<td>H&N</td>
<td>35%</td>
<td>Tureci, 1998</td>
</tr>
</tbody>
</table>
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX2 Protein Expression – Available Antibodies

Identified in serum of synovial sarcoma patient by serological analysis of tumor expression library SEREX

Interesting antigen as potential vaccine target

Contradictory expression data
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

Background – SSX2 Protein Expression

<table>
<thead>
<tr>
<th>Clone</th>
<th>Recognized Antigen</th>
<th>SXX Splice Variant</th>
<th>Comment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3AS</td>
<td>SSX2, SSX3, SSX4</td>
<td>SSX2v1 & SSXv2</td>
<td></td>
<td>Dos Santos, 2000; Greve, 2014</td>
</tr>
<tr>
<td>1A4</td>
<td>SSX2, SSX3</td>
<td>SSX2v1 & SSXv2</td>
<td></td>
<td>Smith, 2011; Greve, 2014</td>
</tr>
<tr>
<td>4A11</td>
<td>SSX2 and other proteins</td>
<td>SSX2v1 & SSXv2</td>
<td>Unspecific</td>
<td>NOVUS; Greve, 2014</td>
</tr>
<tr>
<td>CL3202</td>
<td>SSX2;</td>
<td>SSX2v1</td>
<td></td>
<td>Atlas Antibodies;</td>
</tr>
</tbody>
</table>
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX2 – CL3202 Immunohistochemical Analysis

SSX2-isoform 1

MNGDDAFARRPTVGAQIKEPIQKAFDDIAKYFSKEEWEKMKASEKIFYVYMKRKYAMTKLGFKATLPPFMCNKRAEDF
QGNDLDNDPNRGNQVERPQMTFGRLOQGISPKIMPKPAEEGNDEEVPESGPMQNDGKELCPPGKPTTSEKHERSGP
KRGEHAWTHRLRERKQLVIYEEISDPEEDDE
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX2 – CL3202 Immunohistochemical Analysis

BLAST

Filter by:

Reviewed (10)
Swiss-Prot
Unreviewed (184)
TREMBL
Proteomes (178)

Overview

Show all 194

<table>
<thead>
<tr>
<th>Entry</th>
<th>Protein names</th>
<th>Match hit</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q7RT3</td>
<td>Putative protein SSX9</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Q7RT5</td>
<td>Protein SSX7</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Q7RT6</td>
<td>Putative protein SSX6</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>O60224</td>
<td>Protein SSX4</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Q16384</td>
<td>Protein SSX1</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>O60225</td>
<td>Protein SSX5</td>
<td>93.3%</td>
<td></td>
</tr>
<tr>
<td>Q99909</td>
<td>Protein SSX3</td>
<td>93.3%</td>
<td></td>
</tr>
<tr>
<td>Q16385</td>
<td>Protein SSX2</td>
<td>93.3%</td>
<td></td>
</tr>
<tr>
<td>O60225-2</td>
<td>Isoform 2 of Protein SSX5</td>
<td>93.3%</td>
<td></td>
</tr>
<tr>
<td>Q7RT4</td>
<td>Putative protein SSX8</td>
<td>86.7%</td>
<td></td>
</tr>
</tbody>
</table>

Memorial Sloan Kettering Cancer Center
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – CL3202 Immunohistochemical Analysis

CL3202 is not SSX2-specific but most likely reactive with most/all SSX proteins!
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – CL3202 Immunohistochemical Analysis

30 normal tissues and 322 tumors were analyzed.

Grading:

Percentage of immunopositive:

- **Neg**: 0
- **Focal**: <5%
- **+**: 5-25%
- **++**: 26-50%
- **+++**: 51-75%
- **++++**: >75%

Carrier-Based Multi-Tissue Blocks
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – Normal Tissues
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – Normal Tissues
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – CL3202 IHC Positive Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Total</th>
<th>%</th>
<th>Neg</th>
<th>Pos</th>
<th>foc</th>
<th>+</th>
<th>++</th>
<th>+++</th>
<th>++++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synovial SX</td>
<td>20</td>
<td>100%</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Melanoma</td>
<td>30</td>
<td>23%</td>
<td>23</td>
<td>7</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Thyroid ca</td>
<td>17</td>
<td>41%</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteo SX</td>
<td>15</td>
<td>33%</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminoma</td>
<td>15</td>
<td>27%</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDC (breast)</td>
<td>15</td>
<td>7%</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NSCLC -SQCC</td>
<td>20</td>
<td>5%</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

SSX – Tumors, Synovial Sarcoma

20 cases

13 Female; 7 Male

14 monophasic, 7 biphasic

13 primaries, 4 metastasis, 3 recurrences
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

SSX – Tumors, Synovial Sarcoma, monophasic
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

SSX – Positive Tumors, Synovial Sarcoma, biphasic
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

SSX – Positive Tumors, Synovial Sarcoma, biphasic
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – CL3202 IHC Positive Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Total</th>
<th>%</th>
<th>Neg</th>
<th>Pos</th>
<th>foc</th>
<th>+</th>
<th>++</th>
<th>+++</th>
<th>++++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synovial SX</td>
<td>20</td>
<td>100%</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Melanoma</td>
<td>30</td>
<td>23%</td>
<td>23</td>
<td>7</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Thyroid ca</td>
<td>17</td>
<td>41%</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteo SX</td>
<td>15</td>
<td>33%</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminoma</td>
<td>15</td>
<td>27%</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDC (breast)</td>
<td>15</td>
<td>7%</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NSCLC -SQCC</td>
<td>20</td>
<td>5%</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202
SSX – Positive Tumors, Melanoma (metast), homogeneous expression
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202
SSX – Positive Tumors, Melanoma (metast), heterogeneous expression
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – CL3202 IHC Positive Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Total</th>
<th>%</th>
<th>Neg</th>
<th>Pos</th>
<th>foc</th>
<th>+</th>
<th>++</th>
<th>+++</th>
<th>++++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synovial SX</td>
<td>20</td>
<td>100%</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Melanoma</td>
<td>30</td>
<td>23%</td>
<td>23</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Thyroid ca</td>
<td>17</td>
<td>41%</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteo SX</td>
<td>15</td>
<td>33%</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminoma</td>
<td>15</td>
<td>27%</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDC (breast)</td>
<td>15</td>
<td>7%</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NSCLC -SQCC</td>
<td>20</td>
<td>5%</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202
SSX – Positive Tumors, NSCLC, sqcc
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – CL3202 IHC Positive Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Total</th>
<th>%</th>
<th>Neg</th>
<th>Pos</th>
<th>foc</th>
<th>+</th>
<th>++</th>
<th>+++</th>
<th>++++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synovial SX</td>
<td>20</td>
<td>100%</td>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Melanoma</td>
<td>30</td>
<td>23%</td>
<td>23</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Thyroid ca</td>
<td>17</td>
<td>41%</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteo SX</td>
<td>15</td>
<td>33%</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminoma</td>
<td>15</td>
<td>27%</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDC (breast)</td>
<td>15</td>
<td>7%</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NSCLC -SQCC</td>
<td>20</td>
<td>5%</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202
SSX – Positive Tumors

Thyroid ca; papillary

Seminoma
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

SSX – CL3202 IHC Negative Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Total</th>
<th>%</th>
<th>Neg</th>
<th>Pos</th>
<th>foc</th>
<th>+</th>
<th>++</th>
<th>+++</th>
<th>++++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal Ca.</td>
<td>20</td>
<td></td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCC</td>
<td>15</td>
<td></td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSCLC - adeno</td>
<td>10</td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous Ovarian Ca.</td>
<td>20</td>
<td></td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreas, ductal ca.</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCC</td>
<td>25</td>
<td></td>
<td>25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCCC – chromoph</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovary, clear cell ca.</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIST</td>
<td>10</td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFT</td>
<td>10</td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantle Cell Lymphoma</td>
<td>10</td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipo-SX-wd/dd</td>
<td>10</td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leiomyo-SX</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCTB</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chordoma</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwannoma</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondro-SX</td>
<td>10</td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipo-SX</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myxoid LPS</td>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

SSX – Negative Tumors

Leiomyosarcoma

Serous ovarian carcinoma
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX\textsubscript{2}

Conclusion

CL3202 (Atlas, AMAb 91141) reactive with various/all SSX proteins
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

Conclusion

CL3202 (Atlas, AMAb 91141) reactive with various/all SSX proteins

SSX is present in a high percentage (all?) of synovial sarcomas
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

Conclusion

CL3202 (Atlas, AMAb 91141) reactive with various/all SSX proteins

SSX is present in a high percentage (all?) of synovial sarcomas

SSX is homogeneously expressed in synovial sarcomas (vaccines, diagnostics)
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

Conclusion

CL3202 (Atlas, AMAb 91141) reactive with various/all SSX proteins

SSX is present in a high percentage (all?) of synovial sarcomas

SSX is homogeneously expressed in synovial sarcomas (vaccines, diagnostics)

SSX is present in a high percentage melanomas
In-situ Protein Expression Analysis of Cancer Testis Antigen SSX2

CL3202

Conclusion

CL3202 (Atlas, AMAb 91141) reactive with various/all SSX proteins

SSX is present in a high percentage (all?) of synovial sarcomas

SSX is homogeneously expressed in synovial sarcomas (vaccines, diagnostics)

SSX is present in a high percentage melanomas

SSX is only occasionally expressed in most other tumors