A gene expression signature of microvascular invasion in hepatocellular carcinoma in formalin fixed-paraffin embedded biopsies

Aurélie Beafrère1,2, Stefano Caruso3, Gabrielle Couchy3, Jessica Zucman-Rossi3, Nicolas Poté2,4, Valérie Paradis1,2

1Pathology Department, Beaujon Hospital, Clichy, France
2INSERM UMR 1149, Centre de Recherche sur l’Inflammation, Paris, France
3INSERM, UMR 1162, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d’Hématologie, Paris, France
4Pathology Department, Bichat Hospital, Clichy, France
Vascular invasion in HCC

• **Vascular invasion**: Major prognostic factor associated with mortality and tumor recurrence
 • Macroscopic or microscopic (mVI)

• **Definition of mVI**: presence of clusters of tumor cells in vessels located in the tumor capsule and/or in the surrounding liver parenchyma

• Presence (or absence) of mVI = **not assessable before surgery**
 - Only detectable by microscopic examination of the surgical specimen
 - Main limit for optimal management of patients

Biomarkers of mVI

• Several gene expression signatures of mVI, obtained from surgical samples of HCC described in the literature
 none of these signatures have been validated so far in formalin-fixed and paraffin-embedded (FFPE) HCC biopsies

• Several proteins biomarkers of mVI also published
 Ex: PIVKA-II, H4K20, H4K16

 Limited performance (Identification of 40% of HCC with mVI in FFPE biopsies (Se: 43%, Sp:95%)

 35-gene signature, AUC: 0.60 (Se=0.70, Sp=0.51)
Nanostring Technology

• Transcriptomic technology based on direct measurement of transcript abundance (maximum 800 different transcripts), by using multiplexed, color-coded probe pairs

 No step of reverse transcription of mRNA or cDNA amplification

• More sensitive than microArray analysis → good relevance in FFPE tissue specimens

• Requirement of a small amount of RNA → good relevance in biopsy sample

• Validated in breast cancer and in mantle cell lymphoma in FFPE biopsies

Aim of the study

Define a gene expression signature associated with mVI in HCC, applicable on FFPE biopsies using a Nanostring approach.
Study design

Test series (N=69)

HCC Surgical specimens (N=39) HCC Biopsies (N=30)

Definition of the mVI signature

VALIDATION series
HCC Biopsies (N=39)

Validation of the mVI signature
Methods

• **Constitution of two series** from archived FFPE tissue samples of HCC (Department of Pathology, Beaujon Hospital, 1994-2017):

 For all FFPE biopsies of HCC included, the corresponding surgical specimen was available

• **Clinicopathological data** were collected for each case.

• **Pathological review**: Definition of two groups of tumors according to the presence (mVI+) or the absence (mVI-) of mVI on the surgical specimen.

• **Nanostring technology**: use of signature of 200 genes established with literature and RNA sequencing data.
Results
<table>
<thead>
<tr>
<th></th>
<th>Test series (N=69) (%)</th>
<th>Validation series (N=39)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td></td>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td>Age (mean)</td>
<td>61</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Macroscopic examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nodule</td>
<td>58 (84)</td>
<td>36 (92)</td>
<td>0.22</td>
</tr>
<tr>
<td>Size (mean, cm)</td>
<td>6.4</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Satellite nodule</td>
<td>18 (26)</td>
<td>11 (28)</td>
<td>0.81</td>
</tr>
<tr>
<td>Microscopic examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>26 (38)</td>
<td>8 (21)</td>
<td>0.065</td>
</tr>
<tr>
<td>Medium</td>
<td>37 (54)</td>
<td>27 (69)</td>
<td>0.11</td>
</tr>
<tr>
<td>Weak</td>
<td>6 (9)</td>
<td>4 (10)</td>
<td>0.79</td>
</tr>
<tr>
<td>mVI</td>
<td>36 (52)</td>
<td>26 (67)</td>
<td>0.14</td>
</tr>
<tr>
<td>Etiologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHC</td>
<td>20 (29)</td>
<td>8 (21)</td>
<td>0.33</td>
</tr>
<tr>
<td>NASH</td>
<td>16 (23)</td>
<td>11 (28)</td>
<td>0.56</td>
</tr>
<tr>
<td>Alcohol</td>
<td>10 (14)</td>
<td>2 (5)</td>
<td>0.14</td>
</tr>
<tr>
<td>VHB</td>
<td>14 (20)</td>
<td>8 (21)</td>
<td>0.98</td>
</tr>
<tr>
<td>Fibrosis in non tumoral liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>10 (14)</td>
<td>7 (18)</td>
<td>0.64</td>
</tr>
<tr>
<td>F1</td>
<td>8 (12)</td>
<td>4 (10)</td>
<td>0.63</td>
</tr>
<tr>
<td>F2</td>
<td>11 (16)</td>
<td>4 (10)</td>
<td>0.41</td>
</tr>
<tr>
<td>F3</td>
<td>15 (22)</td>
<td>10 (26)</td>
<td>0.64</td>
</tr>
<tr>
<td>F4</td>
<td>25 (36)</td>
<td>14 (36)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Similar clinico-pathological data between the two cohorts
Excellent correlation between HCC biopsies and corresponding surgical samples

Mean correlation index: 0.97 [0.87-0.95]
Definition of a mVI transcriptomic signature: test series

Unsupervised analysis (200 gene signature)

Differential gene expression analysis
39 differentially expressed genes
(logFC ≥ |0.5| & Adj Pvalue < 0.1)

Up-regulated

Down-regulated
Definition of a mVI transcriptomic signature

10-gene signature

<table>
<thead>
<tr>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
</tr>
<tr>
<td>BUB1</td>
</tr>
<tr>
<td>TAF9</td>
</tr>
<tr>
<td>NRCAM</td>
</tr>
<tr>
<td>UGT2B7</td>
</tr>
<tr>
<td>NARF</td>
</tr>
<tr>
<td>TM6SF2</td>
</tr>
<tr>
<td>FGFR4</td>
</tr>
<tr>
<td>PGLS</td>
</tr>
<tr>
<td>PGC</td>
</tr>
</tbody>
</table>

Prediction algorithm: k Nearest Neighbor analysis
Performance of 10-gene mVI signature: validation series

- Sensitivity: 0.92
- Specificity: 0.62
- Accuracy: 0.82
Discussion

• Excellent transcriptomic correlation between biopsies and corresponding surgical specimens
• Successful transcriptomic analysis on FFPE samples and particularly on biopsies

Transcriptomic analysis is achievable on HCC routine biopsies

• **Good performance of the mVI signature** obtained compared to the literature

 Se: 92%, Sp: 62 % vs

 Se: 70%, Sp: 51% (Mínguez et al, J Hepatol. 2011;55(6):1325-31)

• Signature limited to 10 genes → best relevance for a routine use
Conclusion

Resectable HCC

Biopsy

Transcriptomic mVI signature

HCC without mVI

Surgical resection

Adaptation of therapeutic strategy

HCC with mVI

TACE before surgery