Correlation between the ultrasound-guided thyroid fine needle aspiration cytology with limited molecular testing and surgical histopathology results

ESP, Nice, 7-11 September 2019

Hatice SENELDIR¹, Gozde KIR¹, Tuce SOYLEMEZ¹, Rabia Burcin GIRGIN¹, Nurver OZBAY¹, Filiz OZEN², Handan ANKARALI³, Gurhan BAS⁴, Orhan ALIMOGLU⁴

¹Medeniyet University Göztepe Education & Research Hospital/ Pathology Department
²Medeniyet University Göztepe Education & Research Hospital/ Molecular Biology And Genetics Department
³Medeniyet University Göztepe Education & Research Hospital/ Biostatistics and Medical Informatics Department
⁴Medeniyet University Göztepe Education & Research Hospital/ General Surgery Department
Disclosure Information

I hereby declare that I have had business or personal interests in the following industrial enterprises since 1 September 2018:

<table>
<thead>
<tr>
<th>Name of the enterprise / Nature of the interest</th>
</tr>
</thead>
</table>

No disclosure.
Thyroid Nodules

Approximately 15-30% of cases are cytologically indeterminate.
The Bethesda System for Reporting
Thyroid Cytopathology-2017

<table>
<thead>
<tr>
<th>Diagnostic category</th>
<th>Risk of malignancy (%)</th>
<th>Usual management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nondiagnostik or unsatisfactory</td>
<td>5-10/5-10</td>
<td>Repeat FNA with ultrasound guidance</td>
</tr>
<tr>
<td>2. Benign</td>
<td>0-3/0-3</td>
<td>Clinical and sonographic follow-up</td>
</tr>
<tr>
<td>3. Atypia of undetermined significance (AUS)/folicular lesion of undetermined significance (FLUS)</td>
<td>10-30/6-18</td>
<td>Repeat FNA, molecular testing, or lobectomy</td>
</tr>
<tr>
<td>4. Follicular neoplasm or suspicious for a follicular neoplasm (FN/SFN)</td>
<td>25-40/10-40</td>
<td>Molecular testing, or lobectomy</td>
</tr>
<tr>
<td>5. Suspicious for Malignancy (SM)</td>
<td>50-75/45-60</td>
<td>Near-total thyroidectomy or lobectomy</td>
</tr>
<tr>
<td>6. Malignant</td>
<td>97-99/94-96</td>
<td>Near-total thyroidectomy or lobectomy</td>
</tr>
</tbody>
</table>
OBJECTIVE

This study aims to compare the genotypic alterations for BRAF, NRAS, and KRAS mutations of FNA samples on cell block specimens in the indeterminate and malignant categories with subsequent histology of surgical specimens.
Flowchart

Abnormal cytology

| Total (n,%): Abnormal cytology (n,%): Nondiagnostic (n,%): Benign (n,%) | 4467 (100%): 475 (10.6%): 702 (15.7%): 3290 (73.7%) |

| Abnormal cytology Bethesda Category (n): III (228): IV (100): V (54): VI (93) | 150 |

Abnormal cytology with adequate molecular testing (n)

| Bethesda Category (n): III (n): IV (n): V (n): VI (n) | 62 cases: 39 cases: 16 cases: 33 cases |

| Molecular status/ Negative (n,%): 47 (75.8%): 24 (61.5%): 4 (25%): 11 (33.3%) |

| Molecular status/ Positive (n,%): 15 (24.2%): 15 (38.5%): 12 (75%): 22 (66.6%) |

| Molecular status/ Positive (n): 15 cases: 15 cases: 12 cases: 22 cases |

| 1 case braf+kras-nras-: 3 cases braf+kras-nras-: 8 cases braf+kras-nras-: 18 cases braf+kras-nras- |

| 3 cases braf+kras+nras-: 1 case braf+kras-nras+: 2 cases braf+kras+nras-: 3 cases braf-kras-nras- |

| 4 cases braf+kras+nras-: 6 cases braf-kras+nras-: 1 case braf-kras-nras+: 1 case braf+kras+nras- |

| 7 cases braf-kras+nras+: 5 cases braf-kras-nras+: 1 case braf-kras+nras+: 1 case braf+kras+nras- |

Total Thyroidectomy (n): 71

| Thyroidectomy (n): 13 cases: 24 cases: 13 cases: 21 cases |

| Benign (n,%): 9 (69.2%): 10 (41.7%): 11 (54.2%): 12 (66.7%) |

| Malign (n,%): 4 (30.8%): 14 (58.3%): 2 (45.8%): 9 (33.3%) |

| Molecular status/ Negative (n): 8: 7: 2: 2: 30.8%: 2: 6: 38.1% |

| Molecular status/ Positive (n): 1 nras+: 1 braf+kras+: 2 braf+: 7 braf+: 1 nras+: 11 braf+: 2 kras+ |

| 1 braf+kras+: 1 kras+: 3 kras+: 1 braf+kras+: 1 kras+: 2 kras+ |

| 1 nras+: 1 kras+: 4 kras+: 2 kras+: 1 kras+: | 18.2%: 61.9% |
MATERIALS AND METHODS

The retrospective study enrolled 150 cases diagnosed as atypical by FNA cytology
- 62 (41.3%) as AUS/FLUS,
- 39 (26.0%) as FN/SFN,
- 16 (10.7%) as SM,
- and 33 (22.0%) as malignant

on the basis of TBSRTC that had undergone molecular testing at the Department of Molecular Biology and Genetics.
MATERIALS AND METHODS

• Out of 150 cases with atypical cytologic and molecular testing, 71 had undergone a surgical procedure, and histopathology results were compared with both cytology and molecular status.

• According to the final histopathological results, cases were organized into benign and malign groups.

• The endpoint of the study was malign diagnosis on surgical follow-up.

• The NIFT-P was classified in the benign group.
RESULTS

Correlation of fine-needle aspiration cytology with surgical follow-up in the study population.

<table>
<thead>
<tr>
<th>Cytology (Bethesda Category)</th>
<th>Thyroidectomy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benign (n (%))</td>
<td>Malign (n (%))</td>
<td>Total (n (%))</td>
</tr>
<tr>
<td>AUS/ FLUS (III)</td>
<td>9 (69.2)</td>
<td>4 (30.8)</td>
<td>13 (18.3)</td>
</tr>
<tr>
<td>FN/SFN (IV)</td>
<td>10 (41.7)</td>
<td>14 (58.3)</td>
<td>24 (33.8)</td>
</tr>
<tr>
<td>SFM (V)</td>
<td>2 (15.4)</td>
<td>11 (84.6)</td>
<td>13 (18.3)</td>
</tr>
<tr>
<td>Malign (VI)</td>
<td>2 (9.5)</td>
<td>19 (90.5)</td>
<td>21 (29.6)</td>
</tr>
<tr>
<td>Total</td>
<td>23 (32.4)</td>
<td>48 (67.6)</td>
<td>71 (100)</td>
</tr>
</tbody>
</table>

Fisher freeman halton test *p<0.05

There were statistically significant differences in the frequency of benign and malignant histopathologic results between the cytologic categories III, IV, V, and VI (p=0.001).
RESULTS

Correlation of fine-needle aspiration cytology with surgical follow-up in the study population.

<table>
<thead>
<tr>
<th>Cytology (Bethesda Category)</th>
<th>Thyroidectomy</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benign (n (%))</td>
<td>Malign (n (%))</td>
<td>Total (n (%))</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUS/ FLUS (III)</td>
<td>9 (69.2)</td>
<td>4 (30.8)</td>
<td>13 (18.3)</td>
<td>0.001*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN/SFN (IV)</td>
<td>10 (41.7)</td>
<td>14 (58.3)</td>
<td>24 (33.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFM (V)</td>
<td>2 (15.4)</td>
<td>11 (84.6)</td>
<td>13 (18.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malign (VI)</td>
<td>2 (9.5)</td>
<td>19 (90.5)</td>
<td>21 (29.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23 (32.4)</td>
<td>48 (67.6)</td>
<td>71 (100)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Fisher freeman halton test *p<0.05

As expected, the risk of malignancy was higher in samples with more severe cytologic abnormalities.
RESULTS

Correlation between results of fine-needle aspiration cytology and molecular testing.

<table>
<thead>
<tr>
<th>Molecular Status</th>
<th>Cytology (Bethesda Category)</th>
<th>Total</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUS/ FLUS (III)</td>
<td>FN/SFN (IV)</td>
<td>SFM (V)</td>
</tr>
<tr>
<td>Positive</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Negative</td>
<td>15 (%24,2)</td>
<td>15 (%38,5)</td>
<td>12 (%75)</td>
</tr>
<tr>
<td>Positive</td>
<td>15 (%38,5)</td>
<td>15 (%38,5)</td>
<td>12 (%75)</td>
</tr>
<tr>
<td>Negative</td>
<td>47 (%75,8)</td>
<td>24 (%61,5)</td>
<td>4 (%25)</td>
</tr>
<tr>
<td>Positive</td>
<td>4 (%6,5)</td>
<td>4 (%10,3)</td>
<td>10 (%62,5)</td>
</tr>
<tr>
<td>Negative</td>
<td>58 (%93,5)</td>
<td>35 (%89,7)</td>
<td>6 (%37,5)</td>
</tr>
<tr>
<td>Positive</td>
<td>7 (%11,3)</td>
<td>6 (%15,4)</td>
<td>3 (%18,8)</td>
</tr>
<tr>
<td>Negative</td>
<td>55 (%88,7)</td>
<td>33 (%84,6)</td>
<td>13 (%81,3)</td>
</tr>
<tr>
<td>Positive</td>
<td>7 (%11,3)</td>
<td>6 (%15,4)</td>
<td>1 (%6,3)</td>
</tr>
<tr>
<td>Negative</td>
<td>55 (%88,7)</td>
<td>33 (%84,6)</td>
<td>15 (%93,8)</td>
</tr>
</tbody>
</table>

1Chi –square test 2Fisher freeman halton test *p<0.05

- Statistically significant differences existed between the overall molecular status of the categories III, IV, V, and VI (p=0.001).
- Additionally, there was a significant difference between isolated BRAF point mutations in the categories III, IV, V, and VI (p=0.001).
- The positivity of overall molecular testing and the positivity of BRAF point mutations were higher in samples with more severe cytologic categories of the Bethesda System.
RESULTS

Correlation results of surgical follow-up and the combination of cytology and molecular testing (CC-MT) in the study population.

Thyroidectomy

<table>
<thead>
<tr>
<th>Molecular Status</th>
<th>Benign</th>
<th>Malign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Negative</td>
<td>19</td>
<td>(82,5)</td>
<td>15</td>
</tr>
<tr>
<td>Positive</td>
<td>4</td>
<td>(17,4)</td>
<td>33</td>
</tr>
</tbody>
</table>

BRAF

<table>
<thead>
<tr>
<th>Molecular Status</th>
<th>Benign</th>
<th>Malign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Negative</td>
<td>22</td>
<td>(95,7)</td>
<td>25</td>
</tr>
<tr>
<td>Positive</td>
<td>1</td>
<td>(4,3)</td>
<td>23</td>
</tr>
</tbody>
</table>

KRAS

<table>
<thead>
<tr>
<th>Molecular Status</th>
<th>Benign</th>
<th>Malign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Negative</td>
<td>22</td>
<td>(95,7)</td>
<td>39</td>
</tr>
<tr>
<td>Positive</td>
<td>1</td>
<td>(4,3)</td>
<td>9</td>
</tr>
</tbody>
</table>

NRAS

<table>
<thead>
<tr>
<th>Molecular Status</th>
<th>Benign</th>
<th>Malign</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Negative</td>
<td>21</td>
<td>(91,3)</td>
<td>44</td>
</tr>
<tr>
<td>Positive</td>
<td>2</td>
<td>(8,7)</td>
<td>4</td>
</tr>
</tbody>
</table>

*Chi –square test *p<0.05

Regarding the frequencies of overall molecular status, BRAF, and KRAS point mutations, statistically significant differences were present between the benign and malignant groups on surgical follow-up (p=0.001, p=0.001, p=0.001, respectively).
RESULTS
Correlation results of surgical follow-up and the combination of cytology and molecular testing (CC-MT) in the study population.

<table>
<thead>
<tr>
<th>Molecular Status</th>
<th>Benign n</th>
<th>Benign %</th>
<th>Malign n</th>
<th>Malign %</th>
<th>Total n%</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Status</td>
<td>n</td>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>19 (82.5)</td>
<td>15 (31.3)</td>
<td>34 (47.9)</td>
<td></td>
<td></td>
<td>0.001*</td>
</tr>
<tr>
<td>Positive</td>
<td>4 (17.4)</td>
<td>33 (68.8)</td>
<td>37 (52.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF</td>
<td>n</td>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>22 (95.7)</td>
<td>25 (52.1)</td>
<td>47 (66.2)</td>
<td></td>
<td></td>
<td>0.001*</td>
</tr>
<tr>
<td>Positive</td>
<td>1 (4.3)</td>
<td>23 (47.9)</td>
<td>24 (33.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td>n</td>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>22 (95.7)</td>
<td>39 (81.3)</td>
<td>61 (85.9)</td>
<td></td>
<td></td>
<td>0.001*</td>
</tr>
<tr>
<td>Positive</td>
<td>1 (4.3)</td>
<td>9 (18.8)</td>
<td>10 (14.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRAS</td>
<td>n</td>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>21 (91.3)</td>
<td>44 (91.7)</td>
<td>65 (91.5)</td>
<td></td>
<td></td>
<td>0.959</td>
</tr>
<tr>
<td>Positive</td>
<td>2 (8.7)</td>
<td>4 (8.3)</td>
<td>6 (8.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chi –square test *p<0.05

The frequencies of overall positive molecular status, BRAF, KRAS, and NRAS point mutations in the malign group were 68.8%, 47.9%, 18.8%, and 8.3%, respectively.
RESULTS

Positive predictive values of cytology and the combination of cytology and molecular testing (CC-MT).

<table>
<thead>
<tr>
<th></th>
<th>A Cytology</th>
<th>B CC-MT</th>
<th>P_{A-B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>PPV: 67.6</td>
<td>PPV: 89.2</td>
<td>0.004*</td>
</tr>
<tr>
<td></td>
<td>95% CI: 0.555-0.782</td>
<td>95% CI: 0.746-0.970</td>
<td></td>
</tr>
<tr>
<td>AUS/ FLUS (III)</td>
<td>PPV: 30.8</td>
<td>PPV: 75.0</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>95% CI: 0.091-0.614</td>
<td>95% CI: 0.194-0.993</td>
<td></td>
</tr>
<tr>
<td>FN/SFN (IV)</td>
<td>PPV: 58.3</td>
<td>PPV: 72.7</td>
<td>0.391</td>
</tr>
<tr>
<td></td>
<td>95% CI: 0.366-0.778</td>
<td>95% CI: 0.390-0.940</td>
<td></td>
</tr>
<tr>
<td>SFM (V)</td>
<td>PPV: 84.6</td>
<td>PPV: 100</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>95% CI: 0.545-0.981</td>
<td>95% CI: 0.717-1.000</td>
<td></td>
</tr>
<tr>
<td>Malign (VI)</td>
<td>PPV: 90.5</td>
<td>PPV: 100</td>
<td>0.137</td>
</tr>
<tr>
<td></td>
<td>95% CI: 0.696-0.988</td>
<td>95% CI: 0.794-1.000</td>
<td></td>
</tr>
</tbody>
</table>

Chi–square test *p<0.05

- The addition of molecular testing to FNA cytology increased the positive predictive value (PPV) of cytology.
- PPV of cytology and CC-MT were 67.6 % and 89.2%, respectively.
RESULTS

Positive predictive values of cytology and the combination of cytology and molecular testing (CC-MT).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>P<sub>AB</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cytology</td>
<td>CC-MT</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>67.6</td>
<td>89.2</td>
<td>0.004*</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.555-0.782</td>
<td>0.746-0.970</td>
<td></td>
</tr>
<tr>
<td>AUS/FLUS (III)</td>
<td>30.8</td>
<td>75.0</td>
<td>0.078</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.091-0.614</td>
<td>0.194-0.993</td>
<td></td>
</tr>
<tr>
<td>FN/SFN (IV)</td>
<td>58.3</td>
<td>72.7</td>
<td>0.391</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.366-0.778</td>
<td>0.390-0.940</td>
<td></td>
</tr>
<tr>
<td>SFM (V)</td>
<td>84.6</td>
<td>100</td>
<td>0.124</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.545-0.981</td>
<td>0.717-1.000</td>
<td></td>
</tr>
<tr>
<td>Malign (VI)</td>
<td>90.5</td>
<td>100</td>
<td>0.137</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.696-0.988</td>
<td>0.794-1.000</td>
<td></td>
</tr>
</tbody>
</table>

*Chi–square test *p<0.05

- In the AUS/FLUS category, PPV of cytology and CC-MT were 30.8% and 75.0%, respectively.
- Although the p-value had marginal significance, it was probably as a result of the small number of cases.
RESULTS

Sensitivity, specificity and PPV of the CC-MT.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>PPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-MT (overall)</td>
<td>68.8</td>
<td>82.5</td>
<td>89.2</td>
</tr>
<tr>
<td>BRAF and cytology</td>
<td>47.9</td>
<td>95.7</td>
<td>95.8</td>
</tr>
<tr>
<td>KRAS and cytology</td>
<td>18.8</td>
<td>95.7</td>
<td>90.0</td>
</tr>
<tr>
<td>NRAS and cytology</td>
<td>8.3</td>
<td>91.3</td>
<td>66.7</td>
</tr>
<tr>
<td>AUS/ FLUS (III)</td>
<td>75</td>
<td>88.9</td>
<td>75.0</td>
</tr>
<tr>
<td>FN/SFN (IV)</td>
<td>57.1</td>
<td>70</td>
<td>72.7</td>
</tr>
<tr>
<td>SFM (V)</td>
<td>81.8</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Malign (VI)</td>
<td>68.4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Indeterminate (III, IV, V) CC-MT</td>
<td>69.0</td>
<td>81.0</td>
<td>83.3</td>
</tr>
<tr>
<td>Indeterminate (III, IV) CC-MT</td>
<td>61.1</td>
<td>78.9</td>
<td>73.3</td>
</tr>
</tbody>
</table>

Chi–square test *p<0.05

In this study, the sensitivity of the CC-MT was 68.8%, specificity was 82.5%, and PPV was 89.2%.
RESULTS

Sensitivity, specificity and PPV of the CC-MT.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity %</th>
<th>Specificity%</th>
<th>PPV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-MT (overall)</td>
<td>68.8</td>
<td>82.5</td>
<td>89.2</td>
</tr>
<tr>
<td>BRAF and cytology</td>
<td>47.9</td>
<td>95.7</td>
<td>95.8</td>
</tr>
<tr>
<td>KRAS and cytology</td>
<td>18.8</td>
<td>95.7</td>
<td>90.0</td>
</tr>
<tr>
<td>NRAS and cytology</td>
<td>8.3</td>
<td>91.3</td>
<td>66.7</td>
</tr>
<tr>
<td>AUS/ FLUS (III)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-MT</td>
<td>75</td>
<td>88.9</td>
<td>75.0</td>
</tr>
<tr>
<td>FN/SFN (IV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-MT</td>
<td>57.1</td>
<td>70</td>
<td>72.7</td>
</tr>
<tr>
<td>SFM (V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-MT</td>
<td>81.8</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Malign (VI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-MT</td>
<td>68.4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(III, IV, V) CC-MT</td>
<td>69.0</td>
<td>81.0</td>
<td>83.3</td>
</tr>
<tr>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(III, IV) CC-MT</td>
<td>61.1</td>
<td>78.9</td>
<td>73.3</td>
</tr>
</tbody>
</table>

Chi–square test *p<0.05

When BRAF, KRAS, and NRAS were performed individually in addition to cytology, the specificities were 95.7 %, 95.7%, and 91.3%, respectively.
CONCLUSION

• Routine use of molecular analysis for all FNA samples remains controversial and is not cost-effective.
• The addition of limited molecular testing to FNA cytology may increase the PPV of cytology in indeterminate categories.
• Cell blocks can be a useful and straightforward method for molecular diagnostic studies.
• Our small panel (BRAF, KRAS, and NRAS) with high specificity and high PPV values may be used for the detection of thyroid malignancy.
• It is pertinent that the addition of limited molecular tests to indeterminate thyroid cytology may be more widely used and cost-effective in practice, particularly in developing countries.
• This approach may reduce repeated FNA, needle biopsy, or diagnostic surgery for atypical thyroid nodules.
Merci... 😊